
Gas-based detectors

Avalanche fluctuations



If the distance between ionisations fluctuates exponentially 
with a mean of 1/α (reciprocal of the Townsend coefficient),

then, the avalanche size fluctuates (nearly) exponentially:

[G. Udny Yule, A Mathematical Theory of Evolution, based on the Conclusions
of Dr. J.C. Willis, F.R.S., Phil. Trans. Roy. Soc. London B 213 (1925) 21-87.
W.H. Furry, On Fluctuation Phenomena in the Passage of High Energy Electrons
through Lead, Phys. Rev. 52 (1937) 569-581.
Robert A. Wijsman, Breakdown Probability of a Low Pressure Gas Discharge,
Phys. Rev. 75 (1949)  833-838.]
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Statistics Yule-Furry

Yule-Furry is exponential for large mean avalanche sizes:
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S.C. Curran (1949)

S.C. Curran et al. measured the pulse height distribution in 
a cylindrical counter (d = 150 m wire,  Ar 50 % CH4 50 %, 
p = 670 mbar) at G ~104-105:
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Pólya distribution

When mathematicians speak of a Pólya distribution, 
they refer to a negative binomial distribution.

Avalanche papers mean a  distribution:

and sometimes make reference to a 1923 paper which 
deals with railway accidents, diseases and flowers.

[F. Eggenberger and G. Pólya, Über die Statistik verketteter Vorgänge, 
Zeitschrift für Angewandte Mathematik und Mechanik 3 (1923) 279-289.]

P(g)∝gθe−(1+θ)g Note: we sometimes
shift θ by one unit !



The “hump”

A “rounded” gain distribution (f < 1) is beneficial:

reduced efficiency loss because small multiplication 
is not the most probable scenario;

reduced probability of large gain and discharge;

better energy resolution, better particle identification.
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Avalanche size spread – fixed steps

E

Electronsd

 Imagine an electron always creates a secondary                
 after it has traveled precisely a distance d = 1/:

Such an avalanche does not fluctuate:  f = 0 !

f = 0



Assumptions

Yule-Furry follows if one assumes:

probability to ionise over a distance  dx  is   dx            
                                            =                                           
distance between ionisations fluctuates exponentially 
with mean  1/α. 

no history: Townsend coefficient    is constant,

no attachment losses.



Two schools of thought ...

The distance between ionisations does not simply         
vary exponentially (e.g. the Raether group).

 The Townsend coefficient is not constant (e.g.              
 Byrne, Lansiart & Morucci).



Minimum step length
Imposing a minimum distance  
between ionisations adds a hump.

/2  p=0.511

  p=0.989


/2

No cut
(Yule Furry)

Pure exponential

These are not
exponentials.



κ – mean / minimum ionisation distance

When an electron has just ionised, it is not likely to have 
enough energy left to ionise again straight away: it first 
has to pick up energy from the E field.

Quantifying:
Mean distance between ionisations: 1 / α

All interactions playing their role
Minimum distance between ionisations: IP / E

Assuming only ionising collisions
mean ÷ minimum:   κ ≝ E / .α IP

 large κ no minimum distance effect  exponential,
   κ ≃ 1 no fluctuations  peaked.



Heinz Raether's group (Hamburg)

After ionisation, electrons have to travel a minimum distance 
before their energy again suffices to ionise.

 = E / .IP is an indicator of the avalanche shape

Lothar Frommhold (1956)
     = 12-110: exponential

Hans Schlumbohm (1958)
     > 23: exponential
23 >  > 10: levels off towards small sizes
10 > : a maximum appears

Werner Legler  (1961)
      any        model calculation. 

Heinz Artur Raether (1909-1986)



Hans Schlumbohm (1958)

Dimethoxymethane spectra: increasing E,         
decreasing p d and ~constant mean gain.

 

Hans Schlumbohm, Zur Statistik der Elektronenlawinen im ebenen 
Feld III, Z. Phys. 151 (1958) 563-576.

 κ = 26

 κ = 10.5

 κ = 22.6

 κ = 5.3

 κ = 4.1



Werner Legler's Modellgas (1961)

 = distance since last ionisation;
a() = probability to ionise again.

[Werner Legler, Der Statistik der 
Elektronen-lawinen in electronegativen 
Gasen, bei hohen Feldstärken und bei 
großer Gasverstärkung,

Z. Naturforschg. 16 a (1961) 253-261.] 

Energy picked up between
ionising collisions ≫ IP

Real gas ?

Modellgas

IP/E

IP/E



The Magnettrommelrechner (1961)

Excellent agreement ... but no closed form

 = 5.3



The alternative school

Townsend coefficient not constant ...



J. Byrne (1962)

Observing that “the average energy of the two electrons 
coming from an ionizing collision must be less than the 
energy of the colliding electron”, he chose the ansatz:

He then showed that for on-average-large avalanches, the 
Pólya distribution follows, which is in agreement with 
Curran's measurements.

Note: J. Byrne published a different model in 1969.

α(r , n)= f (r ) (a0+
a1

n )



A. Lansiart & J.P. Morucci (1962)

Small avalanches are composed of electrons that
have ionised less, hence
have more energy, hence
will ionise more easily

They modeled this with an avalanche size-dependent :

Implies that (/)2 = 1/(1+k) < 1, in agreement with 
Curran's measurements. 
Electron energy distribution continues to decrease, 
without reaching an equilibrium. 

α(n)=α(0) (1+ k
n )



Werner Legler's response  (1967)

“ To  do  this  in  general one has to use an ionization coefficient α(n, x) which 
depends not only on n but also on the distance x the avalanche has covered from the 
starting point (cathode) of the primary electron. 

Besides the experimental doubts, the introduction instead of α(n, x) of an ionization 
coefficient which depends on n only leads to serious theoretical difficulties.

The suppression of the dependence on x means that the electron swarm has constant 
ionization probability between successive ionizations and relaxation effects are 
neglected, completely contrary to the intention of Cookson and Lewis.

Furthermore, a dependence of the ionization coefficient on n alone is understandable 
only if there are space-charge effects, and these are quite negligible at the beginning 
of the avalanche development.”

[W. Legler, The influence of the relaxation of the electron energy distribution on the 
statistics of electron avalanches, Brit. J. Appl. Phys. 18 (1967) 1275-1280,]



Г.Д. Алхазов (1970)

“Statistics of electron avalanches and ultimate resolution of 
proportional counters”, NIM 89 (1970) 155-165.

Classic paper – examines various geometries, and the 
ionisation probability as function of distance traveled.

[...] indeed there exists some correlation between α, and K [number of electrons 
already in the avalanche] but it has a much more complicated form as compared to 
that in eq. (3) [α  1 + µ/K] so that the assumption that the ionization probability 
depends only on K is in principle unsuitable for the description of the electron 
avalanche statistics. [...] the distribution of the number of electrons in the single 
avalanche in uniform fields deviates from a Polya distribution. [...] In proportional 
cylindrical counters the distribution is in close agreement with a Polya one  



Monte Carlo approach – a way out ?

Analytic models are precious for the insight they afford.

But the complexity of real gases and detectors make 
realistic models unwieldy:

inelastic collisions (vibrations, rotations, polyads);
excitations and Penning transfers;
ionisation;
attachment;
intricate, position-dependent E and B fields.

Predictions for experiments are more practical using a 
Monte Carlo approach, here based on Magboltz.



Pure argon: Magboltz distribution

With increasing E,    = E/.IP   decreases: the size 
distribution becomes more rounded (equal gap):

Exponential fit
Polya fit



Ar/CO2: size distribution

Lower gain than pure Ar, but with increasing field, the 
size distribution still becomes more and more round:

Exponential fit

Polya fit



Distance between ionisation
The distance between successive ionisations oscillates, 
shown here for Ar (also happens in CH4 for instance).
Why ?

Ar, E = 30 kV/cm

Distance between ionisations [µm]

[Magboltz calculations
by Heinrich Schindler]



Ar

Elastic
Ionisation

!



 f  is the experimental measure of “roundness”:
 
      attachment

      exponential

      no spread

f  ↔   κ  translation:
   κ ≫ 20 f ≈ 1
    κ  <  10 f  0 

Relative variance

Dimethoxymethane

Systematic error
of Monte Carlo

Statistical error
of Monte Carlo

f ≡ σ
2
/ n̄2

f =1

f 1

f =0

f

Data



MC verification:  methane

Schlumbohm (data)

Cookson and Lewis (data)

Monte Carlo and
statistical error



Noble gases

Ne

                               Electron energy [eV]

                              Electric field [kV/cm]

Electron energy
distributions
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f≈
1−pion

1pion

where pion≡
 ion

exc ion

Light gases are hot and favour 
ionisation. Hence f is lower.

                               Electron energy [eV]

Ar

Electron energy
distributions



Quenchers: more inelastic & 
less ionisation  larger f ;

Penning transforms excitation 
into ionisation  smaller f.

Open: no Penning effect

Solid: with Penning effect

Ar/CO2 90/10

Ne/CO2 90/10

×

××

Pure noble gas

Adding 10 % CO2

Effect of quenchers



Factors that dis/favour a hump

Exponential (f ≈ 1) when electrons travel longer between 
ionisations than needed to acquire ionisation energy (κ ≫ 20):

energy loss in the form of excitations;
heavy noble gases (excitation favoured over ionisation);
quenched gases: lower electron energy hence more excitation 
and less ionisation.

Prominent hump (f  0) when ionisation is prompt (κ < 10):
high electric field (more ionisation than excitation);
light noble gases (excitation is less favoured);
less quencher (higher electron energy);
efficient recovery of excitation energy (Penning).

[See: 10.1016/j.nima.2010.09.072]



Measurement equipment
Laser:

wave length: 337 nm (3.7 eV, i.e. well 
below the work functions of Ni and Cr: 
relies on two-photon interaction);
intensity lowered to ensure events with 2 
electrons are exceedingly rare;
spot < 100 µm, duration: 4 ns FWHM.

Gaps:
window: quartz + 0.5 nm NiCr;
drift: 3.2 mm;
amplification: 160 µm.

Mesh:
Buckbee Mears 333 lpi electro-formed 
Ni Micro-Mesh™.

Electronics:
pre-amplifier: Cremat CR-110 with 1.4 
V/pC gain and 200 e- RMS noise (380 e- 
when hooked up);
amplifier: CAEN N568B.



Experimental setup

Vessel mounted
on motors

PMT

Optical fibre

Laser optics

See: 10.1016/j.nima.2010.09.072



blue: Pólya signal + Gaussian noise fit;
red:   Monte Carlo (Magboltz), not fits !
Ar 95 % iC4H10 5 %, E=28.12 kV/cm,
Ne 95 % iC4H10 5 %, E=26.25 kV/cm,
He 95 % iC4H10 5 %, E=26.25 kV/cm,

Ar: f ~ 0.60

He: f ~ 0.35
Ne: f ~ 0.35

N
oi

se
N

oi
se

N
oi

se
Single-electron spectra



Relative variance f

Ne and He more peaked 
than Ar, as expected from 
calculations.

Measured and calculated 
relative variance f agree, 
except for Ar, in part due 
to the onset of 
discharges. 



Summary

A microscopic Monte Carlo reproduces several features. 
The moments of the full avalanche size distribution can 
only be extrapolated from smaller avalanches if energy 
relaxation is not an issue.

The hump is more pronounced in the Ar mixture than in 
the He and Ne mixtures because

heavier gases have a lower ionisation yield;
the large Ar excitation losses are only in part recovered;
iC4H10 neutral dissociation losses are larger with Ar.
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