
The 8th DUW

Development
plans

Federico Stagni

I repeat myself one
more time...

Whatever we do, now and in the future:

● Need to keep a running system working, with
continuity
○ whatever we decide, DIRAC won’t impose you to

deploy a parallel DIRAC
● Little manpower

○ Need to focus on important aspects

2

2 years ago...

We reckoned that DIRAC evolutions would be mainly about
targeting the scalability:

3

4

1. Traffic growth

DIRAC architecture, and framework

Core and Framework

The DIRAC Core and Framework has been developed
~10 years ago, and now Lots of stuff in the DIRAC
framework is available/maintained elsewhere

○ this is already technology
■ is it worth/better than what we have now?

● partly, yes!
■ gLogger → python logging [DONE]

● and plugins on the shelf!
■ pyGSI → M2Crypto [IN PROGRESS…

STOPPED?]
■ dips → https [STARTED]

● see later
5

Requirements on
Traffic

Assumption:
increase of one order of magnitude

● Services: ~OK if lots more services
○ → that “~” is meaningful!

● Agents: KO

6

Scalability in mind

● HW scalability: more (micro)services
○ Supposing a good load balancer, this is not necessarily

bad
■ self-tuning system?

○ Enter in the beautiful world of the orchestrators...

7

Chris, 1

year ago...

Limitations of agents

For today’s implementation:
● Parallelization is hard
● Multiple instances may not be possible

○ Lots of work anyway

→ NOT scalable

8

Message Queues

● MQs are in DIRAC
○ For failover purposes
○ Consumers as DIRAC components → RFC

● Push, not pull
● We can replace several agents with

Consumers
○ and also (especially?) executors
○ Agents, executors, consumers as a single

component?
○ … what about trying with this guy?

■ http://python-rq.org/
■ a nice project...

9

https://github.com/DIRACGrid/DIRAC/wiki/RabbitMQ
http://python-rq.org/

10

2. Dataset growth

Are we OK with MySQL?

11

...yes!

● Shall we question MySQL?
○ Recently, new players came on the market

(cockroachDB, crate.io, clustrix are just some name)
○ IMHO it’s (way) too early to start thinking about

investing time in exploring these solutions
■ which probably means that we are NOT

questioning MySQL as RDBMS
● But we have introduced ElasticSearch, and

one day it will be mandatory

12

3. Maintainability

There’s no scalability if the system, and the
software, are not:
● easily maintainable
● easily adoptable, and interoperable

dips:// → https://

● Use HTTPS to allow usage of standard
libraries
○ HTTPS is widely used

■ Big community
● Lower risk of security breach
● Easier to get help
● Easier to understand what the protocol really do underneath

■ Many conventions already exists to send datas
(like JSON or multipart/form-data)

■ Frameworks already exists in python 2&3 for
server-side (Tornado) and client side (requests)

○ For developers it may be easier to modify the code

13

dips:// → https://

14

● There is some work to do:
○ Integration with all DIRAC components
○ How to migrate services ? Clients ?

● Actually some things already works…
○ Secure transport (https)
○ AuthManager (partial) integration
○ Some performance test are written

● And others are not working yet…
○ Did not work with proxies certificates for now

(problems to read all certificate chain)
○ For now you have to write diset service AND https

service (no retro-compatibility)

dirac-install ++

● More flexible dirac-install:
○ Allow to deploy a non released code from:

■ Code repository
■ Local file system
■ Web server

○ Install not official:
■ LCG bundle
■ External

● Status: development has started
● Plan: use it in v6r21

15

Python 3

● … yes, one day
○ not tomorrow

● we have been polishing the code for long
time now
○ so, 2to3 won’t explode

● wide, deep, testing is fundamental

16

to conclude

● Constant evolution
○ several developments started, many we’d like to

start
■ interested? have a student? just get in touch!

● Test, test, test
○ the certification process is a daily work
○ the most automated, the best

■ we use Travis, Jenkins, gitlab-CI...
■ and the certification setup

● want to learn? come to the dev hackhathon tomorrow
○ we’ll introduce performance testing

17

?

18

Questions

19

BACKUP Slides

CS

● Are we hitting it too much?
○ every RPC call goes through it

● Memory cache?
○ object cache?

● Database?
○ Redis, MemcacheDB, pickleDB, ...?
○

20

Encoding/decoding

What if we change
DEncode?
Test: 178k files and their
metadata

21

Queues, consumers,
executors

● The DIRAC executor framework was an attempt of a
scalable queueing system

● With an MQ system the concept of “executor” stays
● A consumer can spawn a (process)pool of executors

○ and we can have several running
● Agents can become a way to trigger executors at

regular times
○ ...does it remind you the RequestExecutingAgent?

■ but you can have several “triggers” -- consumers

22

