
Transformation
System report

Luisa Arrabito1, Federico Stagni2

1) LUPM CNRS/IN2P3, France
2) CERN

8th DIRAC User Workshop 22nd –
25th May 2018, Lyon

Plan

}  What’s the Transformation System?

}  Practical examples
}  Evolutions

}  Future plans

2

What’s the Transformation System?

}  A DIRAC System as usually comprising:
}  MySQL DB, Services, Agents, Clients, Scripts and Plugins

}  A system for handling “repetitive work”, i.e. many identical tasks with a varying
parameter

}  2 main usages:
}  Productions: the “same” job – i.e. the same workflow - is executed

}  Client for the Workload Management System

}  Data handling: replications, removal

}  Client for the Request Management System

}  It handles input datasets (if present)
}  It interacts with Replica and Metadata catalogs (e.g. DFC or external catalogs)

}  Use of ‘Plugins’ to group tasks input files and set tasks destinations

}  It does not support multi-VO installations

}  LHCb ‘Production System’ as well ‘Distributed Data Management System’ is built
on top of it. Also CTA, ILC and Belle II use it for their productions

3

Transformation System architecture

• 	
 Produc(on	
 Manager	
 	

	
 defines	
 the	
 transforma(ons	

• 	
 Transforma(onAgent	

	
 	
 processes	
 the	
 transforma(ons	
 	
 	
 	
 	

	
 	
 and	
 creates	
 tasks	
 given	
 a	
 	

	
 	
 Transforma(on	
 Plugin	

• 	
 InputDataAgent	

	
 	
 queries	
 the	
 Catalog	
 to	
 obtain	
 	
 	

	
 	
 files	
 to	
 be	
 ‘transformed’	
 	

• 	
 WorkflowTaskAgent	
 	
 	
 	
 	

	
 	
 	
 transforms	
 tasks	
 into	
 job	
 	

	
 	
 	
 workflows,	
 given	
 a	
 	

	
 	
 	
 TaskManager	
 Plugin	

• 	
 RequestTaskAgent	

	
 	
 	
 transforms	
 tasks	
 into	
 	
 	
 	

	
 	
 	
 requests	
 	

4

5

Plugins

}  Transformation Plugins
}  Group input files of the tasks according to different criteria

}  Standard
¨  Group files according to replica location

}  BySize
¨  Group files until they reach a certain size (input size in Gb)

}  ByShare
¨  Groups files given the share (specified in the CS) and location

For replication

}  Broadcast
¨  Take files at the source SE and broadcast to a given number of locations

6

 Plugins

}  TaskManager Plugins
}  Used to specify tasks destination

}  BySE
¨  Default plugin
¨  Set jobs destination depending on the input data location

}  ByJobType
¨  It implements the mesh processing, i.e. the possibility to run jobs

at ‘distant’ sites with respect to data location
¨  It allows to implement any distributed computing model by simple

configuration in the CS
¨  By default, all sites are allowed to run every job

¨  Different rules for site destination can be specified in the CS for each
JobType

ByJobType Plugin: how it works?

}  Configuration
}  Set Operations/Transformations/DestinationPlugin = ByJobType

}  Define the rules for each JobType in Operation/JobTypeMapping, e.g.:

7

AutoAddedSites:
sites allowed to run jobs
with files in their local SEs

JobType

Exclude:
sites that will be removed
as destination sites

Allow:
sites allowed to run jobs
with input data at another
site

}  Here ‘Merge’ jobs having input data at LCG.SARA.nl can run both at LCG.SARA.nl and
LCG.NIKHEF.nl

}  Set ‘Merge’ JobType in the job workflow

8

 Support for parametric jobs

}  Support for parametric jobs
}  Improvement of job submission

}  TaskManager prepares and submits a bunch of jobs in one go

}  It’s activated by Transformations/BulkSubmission flag in CS

How it works in practice (I)?

9

}  See documentation at:
}  http://dirac.readthedocs.io/en/stable/AdministratorGuide/Systems/

Transformation/index.html

}  Installation
}  Need to have the Transformation System installed and running. The

minimum is:
}  Service: TransformationManagerHandler
}  Database: TransformationDB
}  Agents:

¨  TransformationAgent

¨  WorkflowTaskAgent
¨  RequestTaskAgent

¨  InputDataAgent
¨  TransformationCleaningAgent

How it works in practice (II)?

10

Transformations
{
 DataProcessing = MCSimulation
 DataProcessing += Merge
 DataProcessing += Analysis
 DataProcessing += DataReprocessing
 DataManipulation = Removal
 DataManipulation += Replication
}

}  Configuration
}  Add the transformation types in the Operations/[VO]/Transformations

section, e.g.:

}  Eventually configure the WorkflowTaskAgent and the RequestTaskAgent
to treat a particular transformation type

2 classes of Transformations

Use cases examples (I)

11

}  MC Simulation
}  You want to generate many identical jobs with a varying parameter

(and no input files)
}  The varying parameter should be built from @{JOB_ID}, which

corresponds to the TaskID, and it’s used in the job workflow, e.g.:

}  Create a MC transformation

set	
 Type	

Use cases examples (II)

12

}  Data analysis, i.e. process a large number of files with the same program
}  You want to create many identical jobs with varying input files
}  Create a transformation with a valid type (see slide on TS configuration), e.g.:

¨  setType(”Analysis")

}  Add files to the transformation using the TransformationClient
¨  Add a list of existing files

¨  addFilesToTransformation(transID,infileList)

¨  Add files which are the result of a DFC query
¨  Using the InputDataQuery Agent
¨  Using the TSCatalog interface (since v6r17)
¨  Files are added as soon as they are registered in the Catalog
¨  They are most likely the result of another on-going transformation
¨  Query example: {’site': ’Paranal’,'particle': 'proton',’analysis_prog=evndisp’}

¨  Set the number of input files per job, e.g.:
¨  setGroupSize(10)

¨  Define how files should be grouped, e.g.:
¨  setPlugin("Standard”)

Use cases examples (III)

13

}  Data handling
}  Bulk data replication, i.e. replicate many files to a list of Target SEs

¨  You want to create many identical replication requests with varying input files

¨  Create a Replication transformation
¨  Define the type of requests to be executed

}  setBody('ReplicateAndRegister')
¨  Set a valid type (see slide on TS configuration)

}  setType("Replication”)
¨  Set the source and the target SEs for replication

}  setSourceSE(['CYF-STORM-Disk','DESY-ZN-Disk'])
}  setTargetSE(['CEA-Disk'])
}  setPlugin("Broadcast")

}  Bulk data removal (see details in documentation)

Evolutions

14

}  No significant evolutions since last year
}  Meta-filters certified (see RFC #21)

}  Documentation
}  http://dirac.readthedocs.io/en/stable/AdministratorGuide/

Systems/Transformation/index.html

}  Tutorial session on thursday

 Future plans

15

}  See RFC #21:
1.  Improve the logic of the MetaQuery utility which evaluates

the files against the meta-filters
2.  Use MQ complementary to polling

¨  Agents in the TS work in ‘polling’ mode
¨  Proposal to use a Message Queuing System

complementary to polling

3.  Support for chained transformations
¨  Proposal to extend the TS to support chained

transformations as basis for each community to build its own
'Production System’

¨  Topic of the ‘Production Management’ session

16

Backup

 Production
Manager

Job

Transformation System

File Catalog

Plugins Transformations

Transformation
Agent

Workflow
Task Agent

Database table

Agent

Tasks

InputData
Agent

Files

InputDataQuery

Files with
meta-data

WMS	
 RMS	

Request
Task Agent

Meta-filters

17

•  Define transformations with ‘meta-

data filters’, e.g.:

•  When new files are registered in
the File Catalog, they are
evaluated against these filters

–  If they pass a filter, they are
attached to the corresponding
transformation

–  Need to activate the TS Catalog
together with the standard File
Catalog (DFC or external)

•  Avoids ‘large’ File Catalog queries
by the InputData Agent

