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What’s the Transformation System? 

}  A DIRAC System as usually comprising: 
}  MySQL DB, Services, Agents, Clients, Scripts and Plugins 

}  A system for handling “repetitive work”, i.e. many identical tasks with a varying 
parameter 

}  2 main usages: 
}  Productions: the “same” job – i.e. the same workflow - is executed 

}  Client for the Workload Management System 

}  Data handling: replications, removal  

}  Client for the Request Management System 

}  It handles input datasets (if present) 
}  It interacts with Replica and Metadata catalogs (e.g. DFC or external catalogs) 

}  Use of ‘Plugins’ to group tasks input files and set tasks destinations 

}  It does not support multi-VO installations 

}  LHCb ‘Production System’ as well ‘Distributed Data Management System’ is built 
on top of it. Also CTA, ILC and Belle II   use it for their productions 
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Plugins 

}  Transformation Plugins  
}  Group input files of the tasks according to different criteria 

}  Standard  
¨  Group files according to replica location  

}  BySize 
¨  Group files until they reach a certain size (input size in Gb)  

}  ByShare 
¨  Groups files given the share (specified in the CS) and location  

For replication 

}  Broadcast 
¨  Take files at the source SE and broadcast to a given number of locations 
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 Plugins 

}  TaskManager Plugins  
}  Used to specify tasks destination 

}  BySE 
¨  Default plugin 
¨  Set jobs destination depending on the input data location 

}  ByJobType 
¨  It implements the mesh processing, i.e. the possibility to run jobs 

at ‘distant’ sites with respect to data location  
¨  It allows to implement any distributed computing model by simple 

configuration in the CS    
¨  By default, all sites are allowed to run every job 

¨  Different rules for site destination can be specified in the CS for each 
JobType 



ByJobType Plugin: how it works? 

}  Configuration 
}  Set Operations/Transformations/DestinationPlugin = ByJobType 

}  Define the rules for each JobType in Operation/JobTypeMapping, e.g.: 
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AutoAddedSites: 
sites allowed to run jobs  
with files in their local SEs 

JobType 

Exclude: 
sites that will be removed 
as destination sites 

Allow: 
sites allowed to run jobs 
with input data at another 
site 

}  Here ‘Merge’ jobs having input data at LCG.SARA.nl can run both at LCG.SARA.nl and 
LCG.NIKHEF.nl 

}  Set ‘Merge’ JobType in the job workflow 
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 Support for parametric jobs  

}  Support for parametric jobs  
}  Improvement of job submission 

}  TaskManager prepares and submits a bunch of jobs in one go 

}  It’s activated by Transformations/BulkSubmission flag in CS 



How it works in practice (I)? 
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}  See documentation at: 
}  http://dirac.readthedocs.io/en/stable/AdministratorGuide/Systems/

Transformation/index.html 

}  Installation 
}  Need to have the Transformation System installed and running. The 

minimum is: 
}  Service: TransformationManagerHandler 
}  Database: TransformationDB 
}  Agents: 

¨  TransformationAgent 

¨  WorkflowTaskAgent 
¨  RequestTaskAgent 

¨  InputDataAgent 
¨  TransformationCleaningAgent 



How it works in practice (II)? 

10 

Transformations 
{ 
  DataProcessing = MCSimulation 
  DataProcessing += Merge 
  DataProcessing += Analysis 
  DataProcessing += DataReprocessing 
  DataManipulation = Removal 
  DataManipulation += Replication 
} 

}  Configuration 
}  Add the transformation types in the Operations/[VO]/Transformations  

section, e.g.: 

 
 

}  Eventually configure the WorkflowTaskAgent and the RequestTaskAgent 
to treat a particular transformation type 

2 classes of Transformations 



Use cases examples (I) 
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}  MC Simulation 
}  You want to generate many identical jobs with a varying parameter 

(and no input files) 
}  The varying parameter should be built from @{JOB_ID}, which 

corresponds to the TaskID, and it’s used in the job workflow, e.g.: 

}  Create a MC transformation 

set	
  Type	
  



Use cases examples (II) 
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}  Data analysis, i.e. process a large number of files with the same program 
}  You want to create many identical jobs with varying input files 
}  Create a transformation with a valid type (see slide on TS configuration), e.g.: 

¨  setType(”Analysis") 

}  Add files to the transformation using the TransformationClient 
¨  Add a list of existing files  

¨  addFilesToTransformation(transID,infileList) 

¨  Add files which are the result of a DFC query 
¨  Using the InputDataQuery Agent 
¨  Using the TSCatalog interface (since v6r17) 
¨  Files are added as soon as they are registered in the Catalog  
¨  They are most likely the result of another on-going transformation 
¨  Query example: {’site': ’Paranal’,'particle': 'proton',’analysis_prog=evndisp’} 

¨  Set the number of input files per job, e.g.: 
¨  setGroupSize(10) 

¨  Define how files should be grouped, e.g.: 
¨  setPlugin("Standard”) 



Use cases examples (III) 
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}  Data handling  
}  Bulk data replication, i.e. replicate many files to a list of Target SEs 

¨  You want to create many identical replication requests with varying input files 

¨  Create a Replication transformation 
¨  Define the type of requests to be executed 

}   setBody('ReplicateAndRegister') 
¨  Set a valid type (see slide on TS configuration) 

}  setType("Replication”) 
¨  Set the source and the target SEs for replication 

}  setSourceSE(['CYF-STORM-Disk','DESY-ZN-Disk'])  
}  setTargetSE(['CEA-Disk']) 
}  setPlugin("Broadcast") 

}  Bulk data removal (see details in documentation) 



Evolutions 
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}  No significant evolutions since last year 
}  Meta-filters certified (see RFC #21) 

}  Documentation 
}  http://dirac.readthedocs.io/en/stable/AdministratorGuide/

Systems/Transformation/index.html 

}  Tutorial session on thursday 



 Future plans 
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}  See RFC #21: 
1.  Improve the logic of the MetaQuery utility which evaluates 

the files against the meta-filters 
2.  Use MQ complementary to polling 

¨  Agents in the TS work in ‘polling’ mode 
¨  Proposal to use a Message Queuing System 

complementary to polling  

3.  Support for chained transformations 
¨  Proposal to extend the TS to support chained 

transformations as basis for each community to build its own 
'Production System’ 

¨  Topic of the ‘Production Management’ session 
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•  Define transformations with ‘meta-

data filters’, e.g.: 
 

•  When new files are registered in 
the File Catalog, they are 
evaluated against these filters   

–  If they pass a filter, they are 
attached to the corresponding 
transformation  

–  Need to activate the TS Catalog 
together with the standard File 
Catalog (DFC or external) 

•  Avoids ‘large’ File Catalog queries 
by the InputData Agent 


