
The 8th DUW

Core, Framework
and

Configuration
System

Federico Stagni

Overview

Components
The DIRAC components (what DIRAC runs, and what you install) are:

Services, Agents, and Executors.

● Services
○ passive components listening to incoming client requests and reacting

accordingly by serving requested information (or inserting requests on the

Database backend).

● Agents

○ active components, similar to cron jobs, which execution is invoked

periodically. Agents are animating the whole system by executing actions,

sending requests to the DIRAC or third party services.

● Executors
○ similar to consumers of a message queue system. Used in the DIRAC

Workload Management System.

Systems and Setups
● Components are combined together to form Systems delivering a complex functionality to

the rest of DIRAC, providing a solution for a given class of tasks.

○ E.g.: Workload Management System (WMS) or Configuration System or Data

Management System (DMS).

● To achieve a functional DIRAC installation, cooperation of different Systems is required. A

set of Systems providing a complete functionality to the end user form a DIRAC Setup. All

DIRAC client installations will point to a particular DIRAC Setup. Setups can span multiple

server installations. Each server installation belongs to a DIRAC Instance that can be

shared by multiple Setups.

● Within a given installation there may be several Setups. For example, there can be

“Production” Setup together with “Test” or “Certification” Setups used for development and

testing of the new functionality. An instance of a System can belong to one or more

Setups, in other words, different Setups can share some System instances.

http://dirac.readthedocs.io/en/latest/AdministratorGuide/SetupStructure/index.html

http://dirac.readthedocs.io/en/latest/AdministratorGuide/SetupStructure/index.html

DBs and MQs supported

● Databases (MySQL, Oracle, ElasticSearch)
○ Keep the persistent state of a System. They are accessed by

Services, Agents, Executors as a kind of shared memory.

■ Most of DBs are in MySQL, which is only hard dependency

■ No Vanilla DIRAC service needs Oracle

■ ElasticSearch is not yet necessary (see the pres from Zoltan tomorrow)

● MQs (what talks stomp --> ActiveMQ, RabbitMQ)
○ No hard dependency, yet (see the pres from Wojciech tomorrow)

DISET

DISET is the communication, authorization and authentication
framework on top of which DIRAC services are built

Services expose rpc calls

http://dirac.readthedocs.io/en/integration/DeveloperGuide/Internals/Core/ClientServer.html

dips://

ALWAYS: Listening at dips://localhost:9170/WorkloadManagement/Matcher

DISET implements THIS guy

its “s” is for “secure” (SSL-TLS)
exists also the “dip” version

Why?
Long story short: once upon a time, xmlrpc was tried, and it was slow.

So, DIPS was implemented.

DIPS = sockets + SSL + DEncode
 (DEncode = DIRAC marshalling library)

Tomorrow afternoon we’ll
spend few words on what
we’d like to change on this
one

Support for
IPv4 and IPv6
as well

http://dirac.readthedocs.io/en/integration/DeveloperGuide/Internals/Core/Serialization.html

AutheNtication

● X509 Certificates
○ openssl at the base
○ pyGSI (part of DIRAC externals) is the current package that creates

proxies (and not only)
■ a quite thin layer on top of openssl
■ want to replace it with M2Crypto

● RFC proxies are the default
● DIRAC components by default use the certificate of the

host onto which they run
○ Components can be instructed to use a “shifter proxy” for their calls

OUT of DIRAC [doc]

https://github.com/DIRACGrid/pyGSI
https://indico.cern.ch/event/609507/contributions/2577192/attachments/1466655/2267699/m2cryptoindirac.pdf
http://dirac.readthedocs.io/en/integration/DeveloperGuide/Internals/Core/componentsAuthNandAuthZ.html

AuthoriZation

● RBAC (Role Based Access Control) model of AuthZ
○ a role (called property in DIRAC) carries some authorization
○ a hostname has a DN and some properties
○ a username has a DN, and the groups in which it is included
○ a user group has a number of properties

All the above defined in CS in /Registry section
→ A user creates a proxy with a group and this guarantees certain properties

● Services exposed calls authorized by properties
○ Can have a default

■ e.g. “authenticated” -- meaning everyone with a proxy or certificate known to
DIRAC, or “all”

■ Configuration in /Systems/<setup>/Services/<ServiceName>/Authorization

Some properties
CS Administrator - possibility to edit the Configuration Service
CS_ADMINISTRATOR = "CSAdministrator"

Job Administrator can manipulate everybody's jobs
JOB_ADMINISTRATOR = "JobAdministrator"

Job Monitor - can get job monitoring information
JOB_MONITOR = "JobMonitor"

#Allow managing production
PRODUCTION_MANAGEMENT = "ProductionManagement"

On logging

gLogger
(recently) based on python logging module

For every DIRAC component, and every script.

Several backends are possible, allowing for
logs centralization.

http://dirac.readthedocs.io/en/integration/DeveloperGuide/AddingNewComponents/Utilities/gLogger/index.html

Configuration System

Configuration sources
● Command line options: for all the DIRAC commands there is option

‘-o’ defined which takes one configuration option setting.

dirac-wms-job-submit job.jdl -o
/DIRAC/Setup=Dirac-Production

● Command line argument specifying a CFG file

dirac-wms-job-submit job.jdl my.cfg

● $HOME/.dirac.cfg file in the user’s home directory with the CFG
format

● $DIRACROOT/etc/dirac.cfg configuration file in the root directory of
the DIRAC installation

● Configuration Service Configuration data available from the global
DIRAC Configuration Service

Configuration in a cascade
The client needing a configuration option is:

1. first looking for it in the command line arguments. If the option is not found, the

search continues in

2. the cfg file on the command line. If not found, keep looking for it in

3. the user configuration file, then in

4. the DIRAC installation configuration file and finally in

5. the Configuration Service.

These gives a flexible mechanism of overriding global options by specific local settings.

All managed by gConfig

http://dirac.readthedocs.io/en/latest/DeveloperGuide/AddingNewComponents/CheckYourInstallation/index.html#playing-with-the-configuration-service

Configuration structure

● tree structure, divided in sections, can be seen as directories

● each section can contain other sections and options (the leafs) which contain the

actual configuration data.

Sections at the top level:

DIRAC: the most general information about the DIRAC installation.

Systems: Configuration data for all the DIRAC Systems, their instances and components

Registry: Information about DIRAC users, groups and communities (VOs).

Resources: description of all the resources: include computing, storage elements, third
party services.

Operations: operational parameters needed to run the system.

http://dirac.readthedocs.io/en/latest/AdministratorGuide/Configuration/GeneralSetup/index.html#dirac-general-cs
http://dirac.readthedocs.io/en/latest/AdministratorGuide/Configuration/ConfReference/Systems/index.html#dirac-systems-cs
http://dirac.readthedocs.io/en/latest/AdministratorGuide/Configuration/ConfReference/Registry/Groups/index.html#dirac-registry-cs
http://dirac.readthedocs.io/en/latest/AdministratorGuide/Configuration/ConfReference/Resources/index.html#dirac-resources-cs
http://dirac.readthedocs.io/en/latest/AdministratorGuide/Configuration/ConfReference/Operations/index.html#dirac-operations-cs

“The CS”

The Configuration System is DIRAC’s backbone
no Configuration System → no DIRAC

NB: we often refer to “the CS” as DIRAC’s Configuration Service (not the system…)

→ you want/need: 1 master (rw), n slaves (ro)

http://dirac.readthedocs.io/en/latest/AdministratorGuide/Configuration/index.html

Framework

Framework: functionalities

● Instantiation of DIRAC components
but also DIRAC commands (scripts)

● Management and monitoring of components
● Proxies management

http://dirac.readthedocs.io/en/latest/AdministratorGuide/Systems/Framework/index.html

http://dirac.readthedocs.io/en/latest/AdministratorGuide/Systems/Framework/index.html

Components (un)installation

● Framework/SystemAdministrator
○ the only component which is mandatory to run on every host running

DIRAC services (on each server)
○ for managing the components on the host

● Framework/ComponentMonitoring:
○ logs information about what components are being installed and

uninstalled on which machines, when and by whom.
○ complementary to SystemAdministrator, for a global view
○ Running this service is mandatory

Interaction via:
● dirac-admin-sysadmin-cli
● SystemAdministrator web app

○ start/stop/restart components
○ view logs
○ update version

http://dirac.readthedocs.io/en/integration/AdministratorGuide/InstallingDIRACService/index.html
http://dirac.readthedocs.io/en/latest/AdministratorGuide/Systems/Framework/ComponentMonitoring/index.html
http://dirac.readthedocs.io/en/integration/AdministratorGuide/InstallingDIRACService/index.html
http://dirac.readthedocs.io/en/integration/AdministratorGuide/InstallingDIRACService/index.html#setting-up-dirac-services-and-agents-using-the-system-administrator-console

Components
monitoring

● Framework/Monitoring
service
○ Another mandatory

service
○ system based on RRD

■ which one day would
like to replace/improve

● ActivityMonitor/System
Overview Plots web
app

http://dirac.readthedocs.io/en/latest/AdministratorGuide/Systems/Framework/ComponentMonitoring/index.html#id5

CAs update

● multi -server installations required to keep the
CA’s data up to date

● some DIRAC component require CA’s and
CRL’s such as Elasticsearch, WebAppDIRAC

● Mandatory for creating proxy (dirac-proxy-init)
● BundleDeliveryClient for:

○ synchronizing and downloading:
■ CA’s
■ CRL’s

○ CA’s and CRL’s downloaded, if the file can not be
created

Other Framework
components

● UserProfile for storing user related data
○ widely used by the WebAppDIRAC

● SecurityLogging for security traceability
○ keeping who accessed to given DIRAC service

● SystemLogging for storing the errors of each
DIRAC components

Proxies management

● Framework/ProxyManagement service
○ For storing/retrieving proxies in ProxyDB

■ dirac-proxy-init --upload
■ security-wise, you better treat this DB in a bit special way

Be careful with authorization properties:
● FullDelegation → permits full delegation of proxies
● LimitedDelegation → permits downloading only limited proxies
● PrivateLimitedDelegation → permits downloading only limited

proxies for one self

Your pilot jobs will access the ProxyManagement for running the payloads
→ Your pilot group needs the LimitedDelegation property

Questions/comments

?

