top physics beyond the LHC

Mini-review of future collider top prospects

Marcel Vos, IFIC, CSIC/UV, Valencia, Spain

42nd Johns Hopkins workshop

Beyond Standard Model: Where do we go from here?

Galileo Galilei Institute, Florence,

October 3rd 2018

1

GGI JH workshop, Florence, October 2018

marcel.vos@ific.uv.es

Direct searches

Hadron colliders reach up to a fraction of \sqrt{s}

SppS (540 GeV) discovered W, but not top Tevatron (1.96 TeV) discovered top, but not Higgs LHC run I&II (13 TeV) discovered Higgs, but not SUSY (?)

New hadron collider projects, HL-LHC, HE-LHC and SPPC/FCChh to kick the ball further

Lepton colliders cover (nearly) m < $\sqrt{s}(2)$

LEP (208 GeV) missed the Higgs boson (125 GeV)

New e⁺e⁻ colliders (and possibly a muon collider) can extend the mass reach to TeV regime Focus of e⁺e⁻ projects is on Higgs factory operation at 250 GeV (except CLIC: 380 GeV)

2

See: McCullough, Curtin

Direct searches vs. Indirect sensitivity

Indirect sensititivity

Indirect sensitivity can exceed \sqrt{s} significantly

LEP EW fit is sensitive to top and Higgs B-factories probe high scales Complete SMEFT characterization

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_{i} C_i O_i + \mathcal{O}\left(\Lambda^{-4}\right)$$

Quantify BSM sensitivity with limits on anomalous D6 operators coefficients in EFT

This talk is heavily biased towards precision measurements

Energy vs. accuracy

"Energy helps accuracy" M. Farina et al., arXiv:1609.08157, arXiv:1712.0131

Sensitivity of A_c and x-sec to $q\overline{q}t\overline{t}$ operators at Tevatron and LHC

Tevatron: predominantly $q\overline{q}$ initial state

LHC: statistics and energy reach

M. Perelló, M.V., arXiv:1512.07542

C₁

Lepton collider projects

Lepton collider projects:

- ILC (TDR, negotiations): 250, 550, 1000 GeV
- CLIC (CDR): 380, 1500, 3000 GeV
- CEPC (CDR 2018): 90, 160, 250 GeV → no tī
- FCC-ee (CDR 2018): 90, 160, 240, 350, 370 GeV

Detailed designs for ILC/CLIC CEPC/FCC-ee provide CDRs See: F. Simon (linear), P. Janot (circular) later today

Will plasma-wakefield acceleration arrive in time? (see: Gessner, Peskin)

Can MICE, LEMMA, etc. revive interest in a muon collider? (see: M. Zanetti)

Top production at e⁺e⁻ colliders

Thresholds:

160 GeV WW 240 GeV ZH 350 GeV tt 500 GeV ZHH 550 GeV ttH

t-channel processes:

Vector-boson fusion Hvv, HHvv WWvv, tīvv

Key advantages: democratic rates, calculability, control over initial state \rightarrow precision can reach sub-% or per mil level

GGI JH workshop, Florence, October 2018

6

Cross sections at e⁺e⁻ colliders

Thresholds:

160 GeV WW 240 GeV ZH 350 GeV tť 500 GeV ZHH 550 GeV tťH

t-channel processes:

Vector-boson fusion Hvv, HHvv WWvv, tīvv

Work in progress by Wulzer et al. CLIC top paper, arXiv:1807.02441

Top physics at the next hadron collider

Projects for the next hadron collider

Assume 16 Tesla magnets: $\sqrt{s/L} \sim 1 \text{ TeV/km}$ (see: T. Chen)

SPPC (China) 100 km (TeV)
FCChh (CERN) 100 km (TeV)
High-E LHC (CERN)

27 km (TeV)

See: M. Mangano later today

There is plenty of LHC left...

And that includes a lot more top physics than what was prospected back in 2002

CERN-TH/2002-078 hep-ph/0204087 April 1, 2002

PHYSICS POTENTIAL AND EXPERIMENTAL CHALLENGES OF THE LHC LUMINOSITY UPGRADE

Conveners: F. Gianotti¹, M.L. Mangano², T. Virdee^{1,3}

Contributors: S. Abdullin ⁴, G. Azuelos ⁵, A. Ball ¹, D. Barberis ⁶, A. Belyaev ⁷, P. Bloch ¹, M. Bosman ⁸, L. Casagrande ¹, D. Cavalli ⁹, P. Chumney ¹⁰, S. Cittolin ¹, S.Dasu ¹⁰, A. De Roeck ¹, N. Ellis ¹, P. Farthouat ¹, D. Fournier ¹¹, J.-B. Hansen ¹, I. Hinchliffe ¹², M. Hohlfeld ¹³, M. Huhtinen ¹, K. Jakobs ¹³, C. Joram ¹, F. Mazzucato ¹⁴, G.Mikenberg ¹⁵, A. Miagkov¹⁶, M. Moretti¹⁷, S. Moretti ^{2,18}, T. Niinikoski ¹, A. Nikitenko^{3,†}, A. Nisati ¹⁹, F. Paige²⁰, S. Palestini ¹, C.G. Papadopoulos²¹, F. Piccinini^{2,‡}, R. Pittau²², G. Polesello ²³, E. Richter-Was²⁴, P. Sharp ¹, S.R. Slabospitsky¹⁶, W.H. Smith ¹⁰, S. Stapnes ²⁵, G. Tonelli ²⁶, E. Tsesmelis ¹, Z. Usubov^{27,28}, L. Vacavant ¹², J. van der Bij²⁹, A. Watson ³⁰, M. Wielers ³¹

"Given the large top quark cross-section, most of the top physics programme should be completed during the first few years of LHC operation [32]. In particular, the tt and the single-top production cross-sections should be measured more precisely than the expected theoretical uncertainties, and the determination of the top mass should reach an uncertainty (dominated by systematics) of ~ 1 GeV, beyond which more data offer no obvious improvement."

Hadron collider potential: challenges

Example: tt inclusive cross section at 13 TeV (arXiv:1606.02699)

Experiment:

Statistical uncertainty: Systematic uncertainty: Luminosity: << 0.1% (with 3.2 fb⁻¹) 3.3% (2.8% had.) 2.3%

Theory: Scale uncertainty: PDF

~3% (NNLO+NNLL) 4.2% (PDF4LHC)

Systematics limit many measurements already today. Progress in precision physics at hadron colliders requires new developments.

arXiv:1507.08169: "one of the key obstacles to exploiting the immense statics available at hadron colliders for precision measurements, is the intrinsic difficulty in performing accurate absolute rate predictions"

Hadron colliders: top quark factories

•	# tt events	Tevatron run II 10 fb ^{.1} @ 1.96 TeV	LHC 2012 20 fb-1 @ 8 TeV	LHC sep-2016 30 fb ⁻¹ @ 13 TeV	LHC design 300 fb-1 @ 13 TeV	HL-LHC 3 ab ^{_1} @ 13/14 TeV
t	tt production	57 k	2.6 M	15.5 M	155 M	1.55 G

The increase in statistics in the high-energy tail is much more pronounced than of the total cross section

HL-LHC, HE-LHC access remote and unexplored corners of phase space

FCChh/SPPC could produce 10¹² top quark pairs!!

The sheer brute force of hadron colliders

Fully hadronic tīt event Invariant mass: 3.3 TeV Run 2 at 13 TeV

Note: first boosted object ever at BOOST 2011!!

leptonic top candidate Flectron Lectonic top candidate hadronic top candidate Lectonic top candidate

Boosted objects for calibration!

Jet mass peak of boosted top quarks used to calibrate calorimeter response

ATLAS in-situ calibration *arXiv:1807.09477*

Who's afraid of boosted top quarks?

Hadron colliders: brute force

GGI JH workshop, Florence, October 2018

14

marcel.vos@ific.uv.es

Differential cross section

Fixed-order calculations do better, but do not agree with data:

p(SM) < 10⁻³

What does it mean?

GGI JH workshop, Florence, October 2018

CMS TOP-17-014

13 TeV, 36 fb⁻¹ data vs. MC and NNLO and aN³LO calculations

Monte Carlo prediction is known to be off since a long time

marcel.vos@ific.uv.es

15

EFT constraints from boosted top quark production

8 TeV fit: resolved and boosted category offer similar sensitivity Englert et al., arXiv:1607.04304

Inclusive measurement syst-limited Boosted expected to improve quicker

GGI JH workshop, Florence, October 2018 16

Indeed, a measurement of the charge asymmetry with m(tt)>1.2 TeV and 0.5% precision shrinks the allowed region by a factor 10 *arXiv:1512.07542*

marcel.vos@ific.uv.es

Ultra-boosted top quark production

Consequences of "top as a light quark" at 100 TeV

Forward production

- dedicated experiment? M. Mangano, TOP2015

Theory progress

 $g \rightarrow t\bar{t}$ splitting, top quark PDF, J. Rojo/NNPDF, arXiv:1607.01831

Ultra-boosted decay topologies

- Lepton-in-jet, Aguilar-Saavedra et al. arXiv:1412.6654
- Charged substructure, A. Larkoski, arXiv:1511.06495
- Pushing calorimeter granularity, arXiv:1412.5951
- BOOST Review arXiv:1803.06991

Detector requirements

- GEANT4 studies for calorimeter
- 9-11 λ , small constant term
- Granularity for boosted objects
- J. Faltova 2018 JINST 13 C03016
- C. Neubuesser, Springer Proc. Phys. 212 (2018)

Ultra-boosted top quark production

FCChh yields an order of magnitude improvement

Further studies would also be desirable to evaluate the complementarity of the measurements [...] with e⁺e⁻ collisions

GGI JH workshop, Florence, October 2018

18

marcel.vos@ific.uv.es

Top physics at hadron colliders: rare processes

rare processes (associated production of top and gauge bosons, tTH, tttt, FCNC decays) become accessible

ArXiv:1605.00617

Rare processes

Rare processes

March 2017

21

GGI JH workshop, Florence, October 2018

marcel.vos@ific.uv.es

Rare processes, next target: tttt

ATLAS search for same-sign leptons + b-jets, arXiv:1807.11883

Sensitive to a large number of BSM scenarios (feel free to pick your prejudice)

Sensitivity approaches SM rate for 4-top production

Upper limit on four-top production rate (assuming SM kinematics):

0	bserved:	69 fb	A slight excess	A slight excess	
E	xpected:	29 fb			
SM pr	rediction:	9.2 fb	Sensitivity = 3x	SM	

GGI JH workshop, Florence, October 2018

marcel.vos@ific.uv.es

Top and FCNC

The ultimate rare process

Not covered: lepton-flavour violating top decays → arXiv:1507.07163

tXc

tXc

GGI JH workshop, Florence, October 2018

25

tXc

tXc

tXc

FCNC Prospects

Rare decays seem like an obvious motivation to keep the top factory running

J. A. Aguilar-Saavedra, arXiv:1709.03975 "At future facilities, limits on top FCN interactions resulting from tt production will not significantly improve over the current ones" [as they are limited by systematics]

HL-LHC prospects for FCNC decay searches 3000 fb⁻¹ at 14 TeV, ATL-PHYS-PUB-2016-019

 $\begin{array}{ll} BR(t \rightarrow Zq) & \precsim 10^{-4} \\ BR(t \rightarrow Hq) & \precsim 10^{-4} \end{array}$

Note: Systematic-aware prospects, with three different scenarios for systematics.

However, dedicated FCC-hh pheno study predicts sensitivity BR (t \rightarrow Hc) < 10⁻⁵, Papaefstathiou & Tetlalmatzi-Xolocotz, arXiv:1712.06332

More data on rare processes

More constraints coming in from rare top production processes (arXiv:1804.07773)

marcel.vos@ific.uv.es

FCNC prospects FCChh

FCChh SM summary, arXiv:1607.01831

"Performing a naive rescaling of the LHC expectations one would expect an improvement of almost two orders of magnitude, reaching a sensitivity of Br(t \rightarrow qZ; t \rightarrow qg) \sim 10⁻⁷

J. A. Aguilar-Saavedra, arXiv:1709.03975

"At future facilities, limits on top FCN interactions resulting from $t\bar{t}$ production will not significantly improve over the current ones" [as they are limited by systematics]

Consider pp \rightarrow Zt and pp $\rightarrow \gamma t$ production at FCChh

Semi-leptonic analysis in ultra-boosted top quarks:

 $\begin{array}{l} Br(t \rightarrow uZ) < 2.7 \times 10^{-6} \\ Br(t \rightarrow cZ) < 5.0 \times 10^{-5} \\ Br(t \rightarrow u\gamma) < 9.1 \times 10^{-7} \\ Br(t \rightarrow c\gamma) < 2.3 \times 10^{-5} \end{array}$

Cf. HL-LHC prospects ATL-PHYS-PUB-2016-019 BR(t \rightarrow Zq) $\lesssim 10^{-4}$ BR(t \rightarrow Hq) $\lesssim 10^{-4}$

"searches for Zt and yt production in the ultraboosted regime will provide competitive limits on top FCN interactions"

FCNC: the rarest processes of all

So rare in the SM, we won't get anywhere near the SM sensitivity soon

Unique attempt to make a comprehensive summary plot comparing all future projects

Note: e⁺e⁻ makes up for slower top production rate with clean environment and charm-tagging performance in some channels

From: Freya Blekman, TOP2018

GGI JH workshop, Florence, October 2018

marcel.vos@ific.uv.es

Top and Higgs

Rare processes: LHC establishes tTH production!

ttH production observed with >5 σ **in both ATLAS and CMS** "New physics". Even if it is predicted by the SM, it is a process that has never been observed before, and is proof of a new interaction

Together with observations of $H \rightarrow b\overline{b}$ and $H \rightarrow \tau \tau$ decay this is solid evidence that Yukawa couplings are responsible for mass of (third-generation) fermions

GGI JH workshop, Florence, October 2018

34

Top Yukawa coupling

Prospects for full LHC program:

 $K_{''} \rightarrow 7-10\%$ (3/ab)

Snowmass Higgs report

Indirect: the top quark Yukawa coupling is inferred from $gg \rightarrow H$ and $H \rightarrow \gamma\gamma$ decay rates. Run I: $k_t = 1.43 \pm 0.23$.

Direct: measurement in ttH production. Run I: $\mu_{ttH} = 2.3 \pm 0.7$

New 13 TeV data

CMS: μ_{ttH} = 1.26 \pm 0.3 ATLAS: μ_{ttH} = 1.32 \pm 0.3

The top Yukawa coupling: global analysis

The indirect constraint on the top Yukawa coupling from top loops in gg \rightarrow H (and H $\rightarrow \gamma\gamma$) is quite powerful

In a global EFT analysis it is very hard to distinguish the effect of a direct Hgg coupling (c_g) from that of the operator that modifies the top Yukawa coupling (c_y)

Direct measurement in ttH remains most powerful handle

Azatov et al., arXiv:1608.00977

Top quark Yukawa coupling at hadron colliders

Deal with theory cross section by using a wisely chosen ratio:

	$\sigma(t\bar{t}H)[{ m pb}]$	$\sigma(t\bar{t}Z)[{\rm pb}]$	$\frac{\sigma(t\bar{t}H)}{\sigma(t\bar{t}Z)}$
$13 { m TeV}$	$0.475^{+5.79\%+3.33\%}_{-9.04\%-3.08\%}$	$0.785^{+9.81\%+3.27\%}_{-11.2\%-3.12\%}$	$0.606^{+2.45\%+0.525\%}_{-3.66\%-0.319\%}$
$100 { m TeV}$	$33.9^{+7.06\%+2.17\%}_{-8.29\%-2.18\%}$	$57.9^{+8.93\%+2.24\%}_{-9.46\%-2.43\%}$	$0.585^{+1.29\%+0.314\%}_{-2.02\%-0.147\%}$

High rate allows to focus on events where H \rightarrow bb and hadronic top decay are sufficiently boosted to reconstruct them as "fat" jets

Fast simulation analysis achieves S/B~1/3. Good mass resolution for H and Z candidates Side-bands to control background normalization.

FCChh could achieve down to 1% precision on the top Yukawa coupling (20/ab, 100 TeV) Mangano, Plehn, Reimitz, Schell, Shao, 2015

Full simulation required to make a solid claim

GGI JH workshop, Florence, October 2018 37

Top quark Yukawa coupling

Challenges:

Small signal sample Large (x100) background rejection Jet reconstruction and pairing

- **ILC** : 3% with 4 ab⁻¹ at 550 GeV
- **ILC** : 4% with 1 ab⁻¹ at 1 TeV

CLIC : 3.8% with 1.5 ab⁻¹ at 1.4 TeV

arXiv:1506.05992

arXiv:1409.7157

arXiv:1807.02441

Bonus: CP properties of the Higgs *arXiv:1809.07127, arXiv:1807.02441*

Indirect top Yukawa coupling

Mitov et al., arXiv:1805.12027

$$\mu_{h \to gg} = \frac{\Gamma_{h \to gg}}{\Gamma_{h \to gg}^{\text{SM}}} = 1 + 2\Delta y_t ,$$
$$\mu_{h \to \gamma\gamma} = \frac{\Gamma_{h \to \gamma\gamma}}{\Gamma_{h \to \gamma\gamma}^{\text{SM}}} = 1 - 0.56\Delta y_t$$

Fit of H \rightarrow gg and H \rightarrow $\gamma\gamma$ rates:

1% precision at 250 GeV

Note: one-parameter fit!!

How robust are indirect constraints?

Top Yukawa coupling: global analyis at lepton colliders

Global limits on top operators from 250 GeV measurements are rather weak *Vryonidou & Zhang, arXiv:1804.09766, Durieux et al., arXiv:1809.03520*

240 GeV run improves over HL-LHC but does not get anywhere near 1-2%

Including tt data helps!

Direct ttH production (>550 GeV) remains desirable

precision of top operator coefficients (global fit, $\Delta \chi^2 = 1$)

EW couplings of the top quark

GGI JH workshop, Florence, October 2018 4

41

Top quark EW couplings

Genuine "world first": there are no LEP constraints on top (right-handed) coupling

BSM sensitivity: large family of (composite Higgs/RS) models predict sizeable deviations from SM prediction

4D Composite Higgs Model Barducci, de Curtis, Moretti, Pruna, JHEP 08 (2015)

Proposal for a (weak) no-loose argument: a measurement of top EW couplings to sub-% precision provides an answer to the question whether Composite Higgs/RS models are realized at their natural scale

Top EW couplings: LHC status

Neutral current: ttZ, $tt\gamma$ associated production (tZ, $t\gamma$)

 \rightarrow processes "discovered", cross section measurements 10-20%

Charged current: single top production, top decay observables \rightarrow precision top physics at the LHC

Fit to Tevatron and LHC data arXiv:1506.08845, arXiv:1512.03360

2015: first attempt to fit all top data

Top EW couplings: LHC status

Neutral current: ttZ, $tt\gamma$ associated production (tZ, $t\gamma$)

 \rightarrow processes "discovered", cross section measurements 10-20%

Charged current: single top production, top decay observables \rightarrow precision top physics at the LHC

Fit to Tevatron and LHC data arXiv:1506.08845, arXiv:1512.03360

Weak limits on the edge of EFT validity Truly global analysis not yet feasible

Top EW couplings: LHC status

Neutral current: ttZ, tty associated production (tZ, ty)

 \rightarrow processes "discovered", cross section measurements 10-20%

Charged current: single top production, top decay observables \rightarrow precision top physics at the LHC

Fit to Tevatron and LHC data *arXiv:1506.08845, arXiv:1512.03360*

Prospects:

BSM sensitivity rougly independent of \sqrt{s} Gain at HL-LHC, HE-LHC, FCChh/SPPC must come from control of systematics

Rontsch & Schulze, arXiv:1501.05939 Schulze & Soreq, arXiv:1603.08911 FCChh SM study, arXiv:1607.01831

EFT: relate many angles to approach the problem

Associated production: $pp \rightarrow t\bar{t}Z$

constraints from different processes and colliders on top electric dipole moment =f(Im(C_{tw}), Im(C_{tB}))

LheC potential for top EW couplings

Dutta, Goyal, Kumar, Mellado, Eur. Phys. J. C75 (2015) no. 12, 577 Kumar, Ruan, to be publ.

EFT: characterize sensitivity vs. energy

Effect of four-fermion operators felt most strongly at high energy

Effect of two-fermion operators best probed at ~400-500 GeV

(See also Fiolhiais et al., arXiv:1206.1033)

GGI JH workshop, Florence, October 2018

Global EFT fit

Durieux, Perello, Zhang, Vos, arXiv:1807.02121 CLIC top paper, arXiv:1807.02441

Figure 23. Global one-sigma constraints and correlation matrix deriving from the measurements of statistically optimal observables in a circular collider (CC-)like benchmark run scenario.

Figure 24. Global one-sigma constraints and correlation matrix deriving from the measurements of statistically optimal observables, in an ILC-like benchmark run scenario.

Figure 25. Global one-sigma constraints and correlation matrix arising from the measurement of statistically optimal observables in a CLIC-like benchmark run scenario.

Sensitivity to four-fermion operators increases strongly with energy

Ultimate precision in global 10parameter fit requires a collider, with two energy stages and beam polarization

GGI JH workshop, Florence, October 2018

Global EFT fit

Durieux, Perello, Zhang, Vos, arXiv:1807.02121 CLICdp top paper, arXiv:1807.02441

Two-fermion operator limits exceed HL-LHC prospects by a large factor

Constraints on 4-fermion and dipole moment operators probe very high scale - TeV LC competitive with qq $\,\rightarrow\,$ tt at the LHC and possibly FCChh

GGI JH workshop, Florence, October 2018 51

Durieux, Matsedonskiy, arXiv:1807.10273 *CLIC top paper, arXiv:1807.02441*

Re-express EFT constraints as limits on the canonical composite Higgs scenario, characterized by a coupling strength g_* and NP scale m_* (*Giudice 2007*)

The top quark is naturally composite in this framework (*Pomarol 2008*), the only viable option to generate the top Yukawa coupling (*Ratazzi 2008*)

Benchmarks: partial (t_{L} and t_{R} composite) & total (t_{R} maximally composite) Pessimistic 5 σ discovery contours reach 7-15 TeV, in favourable cases > 20 TeV

Durieux, Matsedonskiy, arXiv:1807.10273 Comparing projects and channels

Measurements in top and Higgs/di-boson sector yield complementary constraints

Four-fermion operators and highenergy operation can enhance the reach to tens of TeV

"Our results show that one can probe a significant fraction of the natural CH parameter space through the top portal, especially at TeV centre-of-mass energies"

GGI JH workshop, Florence, October 2018

53

Top mass

If top physics should ever get boring, just ask a random group of theorists "does the direct mass measurement yield the pole mass?"

The top quark mass and the EW fit

arXiv:1407.3792

New e⁺e⁻ machines can **take the EW fit to next level**

TLEP physics case, arXiv:1308.6176 Snowmass EW, arXiv:1310.6708

Requires theory progress and precise top quark mass

See: F. Riva

Progress at the LHC: top quark mass revisited

Direct mass measurent can reach 200-300 MeV precision (CMS)

Interpretation of direct top mass measurements is hotly debated.

Calibrate MC mass parameter: Parton shower analytics: Improve MC precision: Renormalon ambiguity:

Hoang et al., PRL117 Hoang et al., arXiv:1807.06617 Nason et al., arXiv:1607.04538, arXiv:1801.03944 Beneke et al., arXiv:1605.03609

Status quo: distinguish "**direct mass"** measurements and **"pole mass"** extractions from (differential) cross section measurements

Progress beyond 500 MeV requires significant experimental and theory work *arXiv:1310.0799*

Top quark pole mass

Inclusive cross section

Well-defined mass scheme & theory unc.

Limited sensitivity: $\Delta m/m \sim 0.2 \Delta \sigma/\sigma$

NEW CMS TOP-17-001 36 fb⁻¹ at 13 TeV cross-section, M_t^{pole} , α_s

Flexible mass scheme:	Table 6: Extraction of $m_t(m_t)$ at NNLO from $\sigma_{t\bar{t}}$ using different PDF sets		
	PDF set (NNLO)	$m_t(m_t)$ [GeV]	
	ABMP16	$161.6 \pm 1.6 \text{ (fit + PDF + }\alpha_{S}) \stackrel{+0.1}{_{-1.0}} \text{ (scale)}$	
	NNPDF3.1	$164.5 \pm 1.5 \text{ (fit + PDF + }\alpha_{S}) \stackrel{+0.1}{_{-1.0}} \text{ (scale)}$	
	CT14	$165.0 \pm 1.7 \text{ (fit + PDF)} \pm 0.6 (\alpha_{\text{S}}) \stackrel{+0.1}{_{-1.0}} \text{ (scale)}$	
MS mass	MMHT14	$164.9 \pm 1.7 \text{ (fit + PDF)} \pm 0.5 (\alpha_{\text{S}}) \stackrel{+0.1}{_{-1.1}} \text{ (scale)}$	
Table 7: Extraction		of $m_{\rm t}^{\rm pole}$ at NNLO from $\sigma_{\rm t\bar{t}}$ using different PDF sets.	
	PDF set (NNLO)	m _t ^{pole} [GeV]	
	ABMP16	$169.1 \pm 1.8 \text{ (fit + PDF + }\alpha_{S}) \stackrel{+1.3}{_{-1.9}} \text{ (scale)}$	
	NNPDF3.1	$172.4 \pm 1.6 \text{ (fit + PDF + }\alpha_{S}) \stackrel{+1.3}{_{-2.0}} \text{ (scale)}$	
	CT14	$172.9 \pm 1.8 \text{ (fit + PDF)} \pm 0.7 (\alpha_{\text{S}}) \stackrel{+1.4}{_{-2.0}} \text{ (scale)}$	
Pole mass	MMHT14	$172.8 \pm 1.7 \text{ (fit + PDF)} \pm 0.6 (\alpha_{\text{S}}) \stackrel{+1.3}{_{-2.0}} \text{ (scale)}$	

Recent D0 pole mass result (arXiv:1605.06168): $m_t = 172.8 \pm 1.1$ (theo.) ^{+3.2} (exp.) GeV

Top quark pole mass

ttg diff. cross-section

Alioli, Moch, Uwer, Fuster, Irles, Vos, arXiv:1303.6415

ATLAS, arXiv:1507.01769

 M_{t}^{pole} = 173.7 ± 1.5 (stat) ± 1.4 (syst) +1.0 _{-0.5} (theory) GeV

ATLAS 8 TeV, *EPJC77 (2017) 804* $M_{t}^{pole} = 173.2 \pm 0.9 \text{ (stat.)} \pm 0.8 \text{ (theo.)} \pm 1.2 \text{ GeV (exp.)}$

Approaching 1 GeV precision, incl. theory

Top quark mass from e⁺e⁻ threshold scan

.4

Threshold shape reveals the top quark mass

Kuhn, Acta Phys.Polon. B12 (1981)

8

2

0

-2

_4

-6 └─ 340

345

do/dX [fb/typ ∆]

Detailed estimates of the precision in multi-parameter fits Martinez, Miguel, EPJ C27, 49 (2003), Horiguchi et al., arXiv:1310.0563, Seidel, Simon, Tesar, Poss, EPJ C73 (2013)

Top quark mass from e+e- threshold scan

A multi-parameter fit can extract the PS mass with excellent precision

Statistical uncertainty:	~20 MeV	100 fb ⁻¹
Scale uncertainty:	~40 MeV	N ³ LO QCD, arXiv:1506.06864
Parametric uncertainty:	~30 MeV	$\alpha_{\rm s}$ world average, arXiv:1604.08122
Experimental systematics:	25-50 MeV	including LS, arXiv:1309.0372

This threshold mass can be converted to the MS scheme with ~10 MeV precision Marquard et al., PRL114, arXiv:1502.01030

A very competitive top quark mass measurement:

$$\Delta m_{t} \sim 50 \ MeV$$
 (= 3 x 10⁻⁴, cf. $\Delta m_{b} \sim 1\%$)

(nearly) independently of machine design and parameters.

Note: this is a prospect, not a target!

The future (of top physics) is bright

Be very critical of any prospect studies!

Top precision physics has a real shot at delivering the transformative discovery that high-energy physics needs

Future facilities offer exquisite sensitivity to high-scale new physics through the top portal

Mapping out the complementary among different projects and between top, Higgs/EW and other parts of the programme

A summary for a general audience

1973: The top quark is conceived

Kobayashi and Maskawa postulate the third generation		Particle physics was so easy back then!	
1972 J	A 5M\$ collider on	1974 Two collic	lers in one country
the SL	.AC parking lot	discover the sa	me particle

CDF and D0 collaborations, Observation of the top quark PRL 75 (1995) 2632-2637, 2626-2631

1995: The top quark is born

GGI JH workshop, Florence, October 2018

65

2015: The top quark turns 20

2015: Life is great at 20!

GGI JH workshop, Florence, October 2018

67

2016: top (finally) grows up... Another day at the top factory

2018: top meets Higgs

2037: top turns 42

The factory closes: looking for a new job

Mid-life crisis?

2037: or happily ever after?

