

Institute for Advanced Study

Diego Redigolo

2/10/2018

Institute for Advanced Study

New playground for Naturalness

New playground for Naturalness

going on from David's talk

(Graham, Kaplan & Rajendran '15)

- classical rolling + Hubble friction set the Cosmo
 - EWSB triggers potential barriers
 - stopping point: Ratio of scales = Ratio of vevs
 - abelian symmetry with O(1) and $(1/3)^N$ charges

(Graham, Kaplan & Rajendran '15)

- classical rolling + Hubble friction set the Cosmo
- EWSB triggers potential barriers
- stopping point: Ratio of scales = Ratio of vevs
- abelian symmetry with O(1) and $(1/3)^N$ charges

(Graham, Kaplan & Rajendran '15)

- classical rolling + Hubble friction set the Cosmo
- EWSB triggers potential barriers
- stopping point: Ratio of scales = Ratio of vevs
- abelian symmetry with O(1) and $(1/3)^N$ charges

CONSEQUENCES:

- works for generic initial conditions

(Graham, Kaplan & Rajendran '15)

(Graham, Kaplan & Rajendran '15)

(Graham, Kaplan & Rajendran '15)

if QCD anomaly generates the wiggles

$$\frac{\phi}{f}G\tilde{G} \iff m_{\pi}^{2}f_{\pi}^{2}\cos\frac{\phi}{f} \iff \theta_{\rm QCD} \sim \mathcal{O}(1)$$

Then the relaxion is excluded by neutron EDM

(Graham, Kaplan & Rajendran '15)

if QCD anomaly generates the wiggles

$$\frac{\phi}{f}G\tilde{G} \iff m_{\pi}^{2}f_{\pi}^{2}\cos\frac{\phi}{f} \iff \theta_{\rm QCD} \sim \mathcal{O}(1)$$

Then the relaxion is excluded by neutron EDM

WAYS OUT:

- changing the Cosmo:
- ★ smaller slope after inflation

Graham, Kaplan Rajendran '15

inflation between EW & QCD PT

Nelson & Prescod-Weinstein '17

(Graham, Kaplan & Rajendran '15)

if QCD anomaly generates the wiggles

$$\frac{\phi}{f}G\tilde{G} \iff m_{\pi}^{2}f_{\pi}^{2}\cos\frac{\phi}{f} \iff \theta_{\rm QCD} \sim \mathcal{O}(1)$$

Then the relaxion is excluded by neutron EDM

WAYS OUT:

- changing the Cosmo:
- ★ smaller slope after inflation

Graham, Kaplan Rajendran '15

inflation between EW & QCD PT

Nelson & Prescod-Weinstein '17

changing the Field Theory: ★ ignoring CP: NP generates wiggles

Gupta, Komargodski, Perez, Ubaldi '15; Espinosa, Panico, Pomarol,Pujolas, Servant '15

solving CP: Nelson-Barr relaxion

Davidi, Gupta, Perez, DR, Shalit '17

CHANGING THE COSMOLOGY

$$\frac{\Lambda_{\rm UV}^4}{F} \sin \frac{\phi_0}{F} = \frac{\Lambda_{\rm wig}^4}{f} \sin \frac{\phi_0}{f} \quad \theta_{\rm QCD}$$

CHANGING THE COSMOLOGY $\frac{\Lambda_{\rm UV}^4}{F} \sin \frac{\phi_0}{F} = \frac{\Lambda_{\rm wig}^4}{f} \sin \frac{\phi_0}{f} \quad \theta_{\rm QCD}$ If we fix the R.H.S slope during inflation \gg slope after inflation Graham, Kaplan & Rajendran '15 $$\begin{split} \dot{\phi}_{\rm roll} \gtrsim H_I^2 &+ \Delta V_{\rm roll} \lesssim V_{\rm infl} & \longrightarrow \Lambda_{\rm UV} \lesssim \left(\frac{\Lambda_{\rm QCD}^4 M_{\rm Pl}^3}{f}\right)^{1/6} \theta^{1/4} \\ & \\ \mathsf{eom} \, \frac{V'}{H_I^2} \end{split}$$

 $H_I \gtrsim 3 {
m ~GeV}$ \checkmark high enough Hubble to suppress QCD wiggles with T-effects

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant '15

$$V_{\rm br} = -M_{\rm br}^2 H^{\dagger} H \cos \frac{\phi}{f} + r_{\rm br} M_{\rm br}^4 \cos \frac{\phi}{f}$$
$$\Lambda_{\rm wig} \equiv \sqrt{M_{\rm br} v}$$

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant '15

$$V_{\rm br} = -\underbrace{M_{\rm br}^2 H^{\dagger} H \cos \frac{\phi}{f}}_{\Lambda_{\rm wig} \equiv \sqrt{M_{\rm br} v}} \frac{\phi}{f} + \underbrace{r_{\rm br} M_{\rm br}^4 \cos \frac{\phi}{f}}_{f}$$

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant '15

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant '15

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant '15

$$V_{\rm br} = -\underbrace{M_{\rm br}^2 H^{\dagger} H \cos \frac{\phi}{f}}_{\Lambda_{\rm wig} \equiv \sqrt{M_{\rm br} v}} \frac{\phi}{f} \quad \text{controlled by } \Lambda_{\rm wig}$$

$$\Lambda_{\rm wig} \gtrsim M_{\rm br} \text{ to make it work}$$

$$\frac{o \text{ loose theorem}}{M_{\rm br}} \text{ to make it work} \quad \text{for all of the EW scale } \mathcal{L}_{\rm NP} \supset Hf^{SM}f^{NP}$$

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant '15

Komargodski, Gupta, Perez, Ubaldi '15

$$V_{\rm br} = -\underbrace{M_{\rm br}^2 H^{\dagger} H \cos \frac{\phi}{f}}_{\Lambda_{\rm wig} \equiv \sqrt{M_{\rm br}v}} \cos \frac{\phi}{f}}_{\text{controlled by } \Lambda_{\rm wig}}$$

$$\Lambda_{\rm wig} \gtrsim M_{\rm br} \text{ to make it work}$$

$$\frac{1}{2} O \log e \text{ theorem}}_{\text{New states @ the EW scale } \mathcal{L}_{\rm NP} \supset Hf^{SM}f^{NP}}$$

Senerically these states are EW-charged

1

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant '15

Komargodski, Gupta, Perez, Ubaldi '15

$$V_{\rm br} = -\underbrace{M_{\rm br}^2 H^{\dagger} H \cos \frac{\phi}{f}}_{\Lambda_{\rm wig} \equiv \sqrt{M_{\rm br}v}} \cos \frac{\phi}{f} \quad \text{controlled by } \Lambda_{\rm wig}$$

$$\Lambda_{\rm wig} \gtrsim M_{\rm br} \text{ to make it work}$$

$$\frac{1}{2} O \log the \text{ EW scale } \mathcal{L}_{\rm NP} \supset Hf^{SM}f^{NP}$$

Generically these states are EW-charged

We can test them @ collider

1

Espinosa, Grojean, Panico, Pomarol, Pujolas, Servant '15

Komargodski, Gupta, Perez, Ubaldi '15

$$V_{\rm br} = -\underbrace{M_{\rm br}^2 H^{\dagger} H \cos \frac{\phi}{f}}_{\Lambda_{\rm wig} \equiv \sqrt{M_{\rm br} v}} \frac{\phi}{f} \operatorname{controlled} \operatorname{by} \Lambda_{\rm wig}$$

$$\Lambda_{\rm wig} \gtrsim M_{\rm br} \text{ to make it work}$$
no loose theorem
New states @ the EW scale $\mathcal{L}_{\rm NP} \supset Hf^{SM}f^{NP}$

$$M_{\rm br}$$

Generically these states are EW-charged

A We can test them @ collider | will show a counter-example later...

addressing strong CP

Something else than QCD generates the wiggles

+ Nelson-Barr sector generates the rolling

Nelson-Barr sector generates the rolling

+

CP is a symmetry of the UV theory

it is spontaneously broken by the relaxion VEV

a discrete symmetry forbids the coupling to $G \tilde{G}$

Nelson-Barr solution to the strong CP problem (Nelson '84, Barr '84)

Nelson-Barr sector generates the rolling

+

CP is a symmetry of the UV theory

it is spontaneously broken by the relaxion VEV

a discrete symmetry forbids the coupling to $G\bar{G}$

Nelson-Barr solution to the strong CP problem (Nelson '84, Barr '84)

The U(1) on the N-site of the clockwork chain is broken explicitly $g_{u,d}\tilde{g}_{u,d}$

Davidi, Gupta, Perez, DR, Shalit '17

New playground for Naturalness

New playground for Naturalness

Model-independent PHENO depends on explicit breaking from wiggles

Model-independent PHENO depends on explicit breaking from wiggles

Model-independent PHENO depends on explicit breaking from wiggles

Model-independent boundaries

inflation OK $\Lambda_{
m roll}^4 \lesssim H_I^2 M_{
m Pl}^2$ small quantum spread $\dot{\phi} \gtrsim H_I^2$

Model-independent boundaries

Model-independent boundaries

Model-independent boundaries

minimal mass

Model-independent boundaries

Ly-a power spectrum)

highest cut-off **highest mixing**

TESTABLE SETUP

highest cut-off **highest mixing**

TESTABLE SETUP

Different probes depending on the mass range

Different probes depending on the mass range $m_\phi > 0.1~{ m GeV}$

Different probes depending on the mass range

 $0.1 \text{ KeV} < m_{\phi} < 0.1 \text{ GeV}$

Different probes depending on the mass range $m_{\phi} < 100 \ {\rm eV}$

• 5th force experiments see Andrew's talk

 $V(r) = rac{lpha_{
m eff}}{r} e^{-m_{\phi}r}$ through Higgs mixing we induce a long range force

The Nelson Barr relaxion

narrows down the relaxion parameter space

$$V_{\rm roll} = \frac{g_{u,d}\tilde{g}_{u,d}f^4}{16\pi^2}\cos\frac{\phi}{F}$$

The Nelson Barr relaxion

narrows down the relaxion parameter space

$$V_{\text{roll}} = \frac{g_{u,d}\tilde{g}_{u,d}f^4}{16\pi^2} \cos\frac{\phi}{F} \qquad \sqrt{g_{u,d}\,\tilde{g}_{u,d}} \lesssim 10^{-3}$$

flavor structure dependent

see M. Dine & P. Draper '15 L. Vecchi '14

The Nelson Barr relaxion

narrows down the relaxion parameter space

if produced cold (misalignment, during inflation, other?...) it would be a classical background

if produced cold (misalignment, during inflation, other?...) it would be a classical background

if produced cold (misalignment, during inflation, other?...) it would be a classical background

this might enhance detectability in the near future

- atomic clock experiments
- absorption

if produced cold (misalignment, during inflation, other?...) it would be a classical background

this might enhance detectability in the near future

- atomic clock experiments
- absorption

if produced cold (misalignment, during inflation, other?...) it would be a classical background

this might enhance detectability in the near future

atomic clock experiments

absorption

It touches the boundary of the parameter space!

(Davidi, Gupta, Perez, DR, Shalit '18)

We use sterile neutrinos ${\cal L}_{
m NP} \supset Y_N ilde{H} LN^c$

(Davidi, Gupta, Perez, DR, Shalit '18)

We use sterile neutrinos $\mathcal{L}_{\mathrm{NP}} \supset Y_N \tilde{H} L N^c$ Froggatt-Nielsen texture to ensure $\begin{cases} \Lambda_{\mathrm{br}} \gtrsim M_{\mathrm{br}} & \text{(where } M_{\mathrm{br}} \text{ is the scale of sterile neutrinos)} \\ \text{neutrino masses for free} \end{cases}$

(Davidi, Gupta, Perez, DR, Shalit '18)

The relaxion is the PNGB of a U(1) flavor symmetry acting on leptons

(Davidi, Gupta, Perez, DR, Shalit '18)

The relaxion is the PNGB of a U(1) flavor symmetry acting on leptons

$$\mathcal{L}_{\phi} \supset \frac{iv\phi}{f} (L_j + e_k^c) (Y_e)_{jk} e_j e_k^c$$

(Davidi, Gupta, Perez, DR, Shalit '18)

FV lepton decays

VS

(Davidi, Gupta, Perez, DR, Shalit '18)

Can we increase the sensitivity of future experiments?

Learning from the past...

TRIUMF (1988)
$$\approx 10^7 \ \mu$$
 $_{\mathrm{BR}(\mu \to e + a)} \lesssim 3 \cdot 10^{-6} \ f_a \gtrsim 10^7 \ \mathrm{GeV}$

The signal is a line at $E_e \approx \frac{m_{\mu}}{2}$

The peak of the Michel spectrum depend on the muon polarization

IT IS ZERO in the OPPOSITE direction to the muon polarization!

CRYSTAL BOX (1988)
$$10^{12} \mu$$
 BR $(\mu \to e + a + \gamma) \lesssim 1 \cdot 10^{-9}$ $f_a \gtrsim 10^6 \text{ GeV}$

CRYSTAL BOX (1988)
$$10^{12} \mu$$
 BR $(\mu \to e + a + \gamma) \lesssim 1 \cdot 10^{-9}$ $f_a \gtrsim 10^6 \text{ GeV}$

MEG with $10^{14} \mu$? no analysis but naively: BR $(\mu \rightarrow e + a + \gamma) \lesssim 1 \cdot 10^{-9} \cdot \frac{1}{\sqrt{100}}$

CRYSTAL BOX (1988)
$$10^{12} \mu$$
 BR $(\mu \to e + a + \gamma) \lesssim 1 \cdot 10^{-9}$ $f_a \gtrsim 10^6 \text{ GeV}$

MEG with $10^{14} \mu$? no analysis but naively: BR $(\mu \rightarrow e + a + \gamma) \lesssim 1 \cdot 10^{-9} \cdot \frac{1}{\sqrt{100}}$

MEG II ? Mu3e ?

CRYSTAL BOX (1988)
$$10^{12} \mu$$
 $BR(\mu \rightarrow e + a + \gamma) \lesssim 1 \cdot 10^{-9}$ $f_a \gtrsim 10^6 \text{ GeV}$ MEG with $10^{14} \mu$?no analysis but naively: $BR(\mu \rightarrow e + a + \gamma) \lesssim 1 \cdot 10^{-9} \cdot \frac{1}{\sqrt{100}}$

MEG II ? Mu3e ?

GENERAL LESSON HERE:

- Flavor experiment can be extremely good at probing light new states
- They compete/complement with astro in some region of the par. space
- Optimised searches on many motivated final states need still to be done (more examples @ NA62 and LHCb) See talk by Filippo Sala

NA62 highly constraint the quark FV interactions

$$\mathcal{L}_{\phi} \supset \frac{iv\phi}{f} (Q_j + u_k^c) (Y_u)_{jk} u_j u_k^c$$

FV Kaon decays are super-powerful probes of NP $~f\gtrsim 10^{11}~{
m GeV}$

NA62 highly constraint the quark FV interactions

$$\mathcal{L}_{\phi} \supset \frac{iv\phi}{f} (Q_j + u_k^c) (Y_u)_{jk} u_j u_k^c$$

FV Kaon decays are super-powerful probes of NP $~f\gtrsim 10^{11}~{
m GeV}$

NA62 highly constraint the quark FV interactions

$$\mathcal{L}_{\phi} \supset \frac{iv\phi}{f} (Q_j + u_k^c) (Y_u)_{jk} u_j u_k^c$$

FV Kaon decays are super-powerful probes of NP $~f\gtrsim 10^{11}~{
m GeV}$

NA62 highly constraint the quark FV interactions

$$\mathcal{L}_{\phi} \supset \frac{iv\phi}{f} (Q_j + u_k^c) (Y_u)_{jk} u_j u_k^c$$

FV Kaon decays are super-powerful probes of NP $~f\gtrsim 10^{11}~{
m GeV}$

The "thermal" relaxion

A. Hook, G. Marquez Tavares '16

$$\mathcal{L} \supset -\frac{\phi}{f} \left(\alpha_Y B \tilde{B} - \alpha_2 W \tilde{W} \right)$$

FEATURES:

- classical rolling + production of massive gauge bosons
- EW VEV goes down and enhance particle production
- particle production relevant $~~ \phi_s \sim f v$
- no coupling to photons

The "thermal" relaxion

A. Hook, G. Marquez Tavares '16

The "thermal" relaxion

A. Hook, G. Marquez Tavares '16

CONSEQUENCES:

- Subplanckian field excursion

- relaxation without inflation N. Fonseca, E. Morgante, G. Servant '18

new
theory
challenges

Raises new cosmological and field theory questions

CC? Is there a bound on small global charges?

inflation? baryogengesis? relaxion DM?

new theory challenges

new pheno probes Raises new cosmological and field theory questions

CC? Is there a bound on small global charges? inflation? baryogengesis? relaxion DM?

- Switches the focus to very light weakly coupled states
- Higgs portal phenomenology for the original relaxion
- ALP phenomenology for the thermal relaxion

BACKUP

How Atomic Clock experiments work?

Arvanitaki, Dimopoulos, Van Tilburg

$$\phi(t,\vec{x}) = \phi_0 \cos(m_\phi t - \vec{k}_\phi \cdot \vec{x} + \dots)$$

$$\phi_0 \approx \frac{1}{m_\phi} \sqrt{2\xi_\phi \rho_{DM}}$$

Fluctuations on the fundamental constant of Nature

The mass controls the frequency

$$\frac{\delta(f_A/f_B)}{(f_A/f_B)} \simeq \left[d_{m_e} - d_g + M_A d_{\hat{m}} + d_e(\xi_A - \xi_B)\right] \kappa \phi(t)$$

$$\Delta \tau < \frac{2\pi}{m_{\phi}} < \frac{3.25 \text{ years}}{\tau_{\text{int}}} \longrightarrow m_{\phi} \lesssim 10^{-15} \text{ eV}$$

Backreaction from NP sector

$$\mathcal{L} = -y_1 e^{irac{2n\phi}{f_{
m UV}}} \epsilon^{lphaeta} h_lpha L_eta N - y_2 h^{\daggerlpha} L_lpha^c N - m_L \epsilon^{lphaeta} L_lpha L_eta^c - rac{m_N}{2} NN + ext{h.c.}$$

screen the Higgs loop

$$\Delta \mathcal{L} = m_D N N^c - \frac{m_{N^c}}{2} N^c N^c \dots \qquad m_N \approx \frac{m_D^2}{m_{N^c}}$$

no quadratic divergences above m_{N^c} $m_L pprox m_N \lesssim m_{N^c} pprox 4\pi v$

Backreaction from neutrino sector

$$\begin{split} \mathcal{L}_{N}^{\mathrm{br}} &= y_{jk}^{D} \cdot \left(\frac{\hat{\Phi}_{0}}{\Lambda_{n}}\right)^{\left|[N_{j}] + \left[N_{k}^{c}\right]\right| - 1} \hat{\Phi}_{0} N_{j} N_{k}^{c} + \frac{1}{2} M_{jk}^{M} N_{j} N_{k} + \mathrm{h.c.} \\ & \supseteq M_{jk}^{D} \cdot U_{0}^{\left[N_{j}\right] + \left[N_{k}^{c}\right]} N_{j} N_{k}^{c} + \frac{1}{2} M_{jk}^{M} N_{j} N_{k} + \mathrm{h.c.} \,, \end{split}$$

The potentials:

$$V_D \sim \frac{\text{Tr}(M^D M^D^{\dagger} \overline{M}^M \overline{M}^{M^{\dagger}})}{16\pi^2} \log \frac{m_{\text{clock}}^2}{M^2}}{M^2}$$

$$V_{\text{br}} \sim H^{\dagger} H \left[\frac{\text{Tr}(Y^n M^D^{\dagger} \overline{M}^M \overline{M}^M M^D Y^{n^{\dagger}})}{16\pi^2 M^2} + \dots \right]$$

The trick: $V_D < V_{\rm br} \longrightarrow M_D$ diagonal

The consequence: $\Lambda_{\rm br} \sim \left(\frac{y_N^2 v^2 M^2}{16\pi^2}\right)^{1/4} \sim \left(\frac{m_{\nu} M^3}{16\pi^2}\right)^{1/4} \lesssim 10 \,\,{
m MeV}\,.$

(Graham, Kaplan & Rajendran)

 $\Lambda_{\rm br}^4 \cos \frac{\phi}{f}$

The Relaxion wiggles

 ϕ gets a "backreaction" potential after EWSB

Periodicity of this potential smaller than the "rolling"

The Relaxion wiggles

$$\sin\frac{\phi_0}{f} \sim \sin\frac{\phi_0}{F} \sim \mathcal{O}(1)$$

