Atomic parity violation

D. Antypas

Johns Hopkins GGI workshop 2/10/18

Outline

- Background & motivations
- Yb parity violation experiment
- Isotopic variation of parity violation in Yb
- Outlook

Atomic Parity Violation

Main Source: Z exchange

Weak interaction (violates parity)

P-odd, T-even effect: $\vec{\sigma} \cdot \vec{p}$

The weak interaction mixes atomic states of opposite nominal parity (s & p)

The weak interaction mixes atomic states of opposite nominal parity (s & p)

Atomic Parity Violation Enhancement:

- Heavy atoms (high Z)
- Small ΔE

How to measure parity violation on forbidden transitions?

- Many reversals to control systematics
- S/N nominally independent of electric field

Nuclear spin-independent atomic PV

- Probe of the nuclear weak charge Q_W Davoudiasl et al, Phys. Rev. D 89, 1402.3620
- Constrain BSM scenarios at tree-level & through oblique rad. corrections
- Probe of the "dark" sector: dark boson, cosmic parity violation (axions, ALPs)

$$Q_W \approx -N + Z \cdot (1 - 4 \sin^2 \vartheta_W)$$

7

Isotopic ratios in atomic PV

 \blacktriangleright APV measures: $E1_{PV} = k_{PV}Q_W$

Isotopic ratios in atomic PV

> APV measures: $E1_{PV} = k_{PV}Q_W$

Atomic PV calculation errors cancel in isotopic ratios Dzuba, Flambaum, and Khriplovich, Z. Phys. D 1, 243 (1986)

$$R = \frac{E \mathbf{1}_{PV}'}{E \mathbf{1}_{PV}} = \frac{Q'_W}{Q_W}$$

Isotopic ratios and neutron skins

Limitation to isotopic ratio method: enhanced sensitivity to the neutron distribution ρ_n(r) Fortson, Pang, Wilets, PRL 65, 2857 (1990)

$$\bar{Q}_W = -Nq_n + Zq_p(1 - 4\sin^2\theta_W) + \Delta Q_{\text{new}}$$

Isotopic ratios and neutron skins

Limitation to isotopic ratio method: enhanced sensitivity to the neutron distribution ρ_n(r) Fortson, Pang, Wilets, PRL 65, 2857 (1990)

$$\bar{Q}_W = -Nq_n + Zq_p(1 - 4\sin^2\theta_W) + \Delta Q_{\text{new}}$$

$$\frac{E1_{PV}}{E1'_{PV}} = 1 + \frac{\Delta N}{N} + \frac{3}{7}(aZ)^2 \frac{\left[\Delta R'_{ns} - \Delta R_{ns}\right]}{R_p}$$

Skin contribution for 170 Yb - 176 Yb isotopes ~ 0.1%

Isotopic ratios and neutron skins [PHYSICAL REVIEW C **79, 035501 (2009)**]

Dispelling the curse of the neutron skin in atomic parity violation

B. A. Brown,¹ A. Derevianko,^{2,3} and V. V. Flambaum³

¹Department of Physics and Astronomy, and National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824-1321, USA ²Department of Physics, University of Nevada, Reno, Nevada 89557 ³ School of Physics, University of New South Wales, Sydney 2052, Australia

Neutron-skin effects in different isotopes are correlated

Why PV with ytterbium

• Large PV effect (DeMille, 1995 - Tsigutkin et al, 2009)

Why PV with ytterbium

- Large PV effect (DeMille, 1995 Tsigutkin et al, 2009)
- 7 stable isotopes (A=168, 170-174,176)

Isotope	NA (%)	Ι
¹⁷⁴ Yb	31.8	0
¹⁷² Yb	21.8	0
¹⁷⁶ Yb	12.8	0
¹⁷³ Yb	16.1	5/2
¹⁷¹ Yb	14.3	1/2
¹⁷⁰ Yb	3.04	0
¹⁶⁸ Yb	0.13	0

• PNC on chain of isotopes \rightarrow neutron distributions & new physics

Why PV with ytterbium

- Large PV effect (DeMille, 1995 Tsigutkin et al, 2009)
- 7 stable isotopes (A=168, 170-174,176)

Isotope	NA (%)	Ι
¹⁷⁴ Yb	31.8	0
¹⁷² Yb	21.8	0
¹⁷⁶ Yb	12.8	0
¹⁷³ Yb	16.1	5/2
¹⁷¹ Yb	14.3	1/2
¹⁷⁰ Yb	3.04	0
¹⁶⁸ Yb	0.13	0

- PNC on chain of isotopes \rightarrow neutron distributions & new physics
- Two isotopes with nuclear spin \rightarrow spin-dependent PV effects

The Yb PV experiment

Reverse E (20 Hz) & θ (0.2 Hz) and measure $E I_{PV} / \beta$

The Yb PV experiment

Reverse E (20 Hz) & θ (0.2 Hz) and measure $E1_{PV}/\beta$

Apparatus schematic

Early 2018 run in 4 spin-zero isotopes

First observation of isotopic variation of atomic PV

SM: $Q_W \approx -N + Z(1 - 4 \sin^2 \theta_W) \rightarrow 1\%$ change per neutron around N=103 Observation: 0.96(15) % change per neutron

Single isotope measurement uncertainties

Systematic uncertainties	Error (%)	
Harmonics ratio calibration	0.22	
Polarization angle	0.1	
High-voltage measurements	0.06	
Transition saturation correction	0.05 (0.09 for ¹⁷⁰ Yb)	
Field-plate spacing	0.04	
Photodetector response calibration	0.02	
Stray fields & field-misalignments	0.02	
Total systematic	0.26	
Statistical uncertainty	0. 42 (0.9 for ¹⁷⁰ Yb)	
Total uncertainty	0.5 (0.9 for ¹⁷⁰ Yb)	

Effect comparison **bonus**:

False-PV

related

decreased sensitivity to systematics

Measurement sensitivity

Constraints on light Z´-mediated e-proton & e-neutron interactions

In collaboration with V. Flambaum

Dzuba, Flambaum and Stadnik, PRL 119, 223201 (2017)

arXiv:1804.05747

Atomic parity violation: Main processes

Safranova et al. arXiv:1710.01833

& type of valence nucleon

Main nuclear-spin-dependent process: anapole moment

- P-odd E/M moment from intranuclear PV
- Probe of weak meson-nucleon couplings (hadronic PV)

Next stop: anapole moment

TABLE II. PNC amplitudes (*z* components) for the $|6s^2, {}^1S_0, F_1\rangle \rightarrow |6s5d, {}^3D_1, F_2\rangle$ transitions in 171 Yb and 173 Yb in units of $E'Q_W$ and $10^{-9}iea_0$.

A				PNC amplitude	
	Ι	$F_1 = F_2$	F_2	units: $E'Q_W$	units: $10^{-9}iea_0$
171	0.5	0.5	0.5	$-(1/3)(1-0.0161\varkappa)$	$6.15(1 - 0.0161\varkappa)$
		0.5	1.5	$\sqrt{2/9}(1+0.0081\varkappa)$	$-8.70(1+0.0081\varkappa$
173 2.5	2.5	2.5	1.5	$-\sqrt{4/45}(1-0.0111\varkappa)$	$5.61(1 - 0.0111\varkappa$
		2.5	2.5	$-\sqrt{5/21}(1-0.0032\varkappa)$	$9.18(1 - 0.0032\varkappa$
		2.5	3.5	$\sqrt{2/21}(1+0.0079\varkappa)$	$-5.81(1+0.0079\varkappa$

Dzuba & Flambaum, PRA 83, 042514 (2011)

"Best guess" PV difference between 171 Yb F'=3/2 and F'=1/2 ~ 0.1% Need to boost SNR!

Yb sensitivity improvements (in progress)

Need x10 sensitivity enhancement for anapole, neutron skins

- Boost the Yb oven flux (x5 signal increase)
- Increase interaction region width (x2)
- Power build-up cavity mirrors upgrade (x2.5)
- Integrate longer...

Summary

A. Frabricant

Dr. K. Tsigutkin

Prof. J. Stalnaker

Prof. D. Budker

Prof. V. Flambaum