

detector requirements for future e⁺e⁻ colliders-

FCC-ee

Patrick Janot, Lucie Linssen EP R&D kick-off meeting November 20th 2017

With many thanks to CLICdp and FCC-ee colleagues for presentation material

high-energy e⁺e⁻ collider projects

`FRI

Future Circular Collider (FCC-ee): CERN e⁺e⁻, Vs: 90 - 350 (365) GeV; FCC-hh pp Circumference: 97.75 km

International Linear Collider (ILC): Japan (Kitakami) e^+e^- , Vs: 250 – 500 GeV (1 TeV) Length: 17 km, 31 km (50 km)

pp collisions / e⁺e⁻ collisions

luminosity performance e⁺e⁻ colliders.

Linear colliders:

- Can reach much higher energies
- Luminosity increases with increasing energy
- Beam polarisation at all energies

Circular colliders:

- Luminosity increases with decreasing energy
- Huge luminosity at lower energies

Note: Latest adjustments (FCC-ee, ILC, CEPC) not included in this plot

```
Peak luminosity at LEP2 (209 GeV) was \sim 10^{32} cm<sup>-2</sup>s<sup>-1</sup>
```


- **380 GeV (350 GeV)**, 600 fb⁻¹: precision Higgs and top physics
	-
	-

- **1.5 TeV**, 1.5 ab⁻¹: **BSM** searches, precision Higgs, ttH, HH, top physics
- **3 TeV**, 3 ab⁻¹: **BSM** searches, precision Higgs, HH, top physics

Staging scenario can be adapted, e.g. to new results from (HL-)LHC CLIC is extendable. May profit from even more advanced technologies for high-E stages

CLIC accelerator parameters

**scaled from CDR, with room for improvement*

FCC-ee physics and staging scenario

Energy stages \sqrt{s} = 91 GeV \overline{Z} , 160 GeV \overline{W} , 240 GeV \overline{H} , 350 (365) GeV

 m_{z} , m_{W} , m_{top} , sin²θ_W^{eff}, R_{b} , α_{QED}(m_z), α_s(m_z m_W), Higgs and top quark couplings ⇒ Precision measurements of electroweak parameters

 \Rightarrow Exploration of 10-1000 TeV energy scale via precision measurements

 \Rightarrow Search for (very) weakly coupled particles

total program duration: 14 years - *including machine modifications* phase 1 (*Z*, *W*, *H*): 8 years, phase 2 (top): 6 years

M. Benedikt, Nov 2017 P.Janot, Acad.Training, Oct 2017

EP R&D kick-off, November 20, 2017 **INL BEHEUIKL, NOV 2017**

FCC-ee accelerator parameters

Beam transverse polarisation \Rightarrow beam energy can be measured to very high accuracy (~50 keV)

At Z-peak very high luminosities and high cross section

- \Rightarrow Statistical accuracies at 10⁻⁵ level (e.g. cross sections, asymmetries)
- ⇒ This drives the **detector performance**

⇒ This also drives requirement on **data rates**

the (new) CLIC detector model

EP R&D kick-off, November 20, 2017 11 12

CLIC silicon pixel R&D (vertex and tracker)

CERN

Layout of the CLIC vertex detector

(with spiraling discs for air cooling purposes) First layer at \sim 30 mm (3 TeV), \sim 25 mm (380 GeV)

EP R&D kick-off, Novem

Performanc for the CLIC tracking

Layout of the CLIC tracker

Tracker radius \sim 1.5 m, maximum strip lengths indicated (assuming $50 \mu m$ strip width) taking into account occupancies from beam-induced background)

CLIC tracking performances

Geant4-based simulation and event reconstruction

Shows that 7 μm in tracker is needed

CLICdp-Note-2017-002

`FRI

E.Leogrande @ LCWS17

CLIC flavour tagging

Geant4-based simulation and event reconstruction

See also: CLICdp-Note-2014-002 and CLICdp-Note-2017-001

for dependence of flavour-tagging performance on vertex detector parameters (single point resolution, amount of material) and vertex detector layout.

=> Vertex detector: 3 μm position resolution is needed, low material budget is very important

ERN

Systematics R&D studies have focused on Pixel implementation, with Pixel sizes around 25×25 μ m² Studies equally valid for the main tracker, even though it will have larger cell sizes

CLIC silicon vertex and tracker R&D (1)

CLICpix (65 nm) + 50 μm sensor Bump-bonding, 25 μm pitch CLIC Dix2 ASIC (65 nm)

Bump-bonding, 25 μm pitch

C3PD HV-CMOS sensor, thinned 50 μm

SOI sensor design

TCAD simulations, HV-CMOS sensor

Recent presentation on vertex R&D

Recent presentation on tracker R&D

EP R&D kick-off, November 20, 2017 16 16 16 17 16 16 17 16 16 17 18 18 19 18 18 19 18 18 19 18 18 19 18 19 19 1

CLIC silicon vertex and tracker R&D (2)

TSV interconnect technology

SOI and C3PD+CLICpix2 in Timepix3 telescope at SPS

7 Timepix3 **Cracow SOI DUT** EP R&D kick-off, November 20, telescope planes assembly board

Caribou r/o C3PD+CLICpix2

Air cooling simulation and 1:1 scale test set up

CLIC fine-grained calorimetry requirements

FRN

Fine-grained calorimetry: **ECAL, HCAL, LumiCal, BeamCal** R&D for CLIC is carried out by the **CALICE** and **FCAL** collaborations

Developments and beam tests of CMS HGCal are an important test bed for CLIC

1 ns time resolution, 16 bit readout 5 ns time resolution, 32 bit readout

FCAL calorimeter module

FCC-ee detector occupancy

Dominant backgrounds

Synchrotron radiation

Interactions between γs from **beamstrahlung** $\gamma\gamma \rightarrow e^+e^-$ (#particles / BX: see figure) $\gamma\gamma \rightarrow$ hadrons (0.005 event / BX)

Effects on first detector layer

Reasonable assumptions Silicon pixel detector

> **Radius**: 17 mm **Pixel pitch : 25×25 µm²**

Safety factor: 3 Full simulation (GuineaPig, GEANT) **Estimated occupancy** \sim 5×10⁻⁴ / BX **Both at the top and the Z**

Needs for fast electronics?

At the Z, one bunch crossing every 20 ns Keep occupancy below 1% with electronics **integration time < 0.4 µs**

FCC-ee interaction region

30 mrad beam crossing angle Emittance blow-up from detector magnetic field Final focusing quadrupoles embedded in the detector

- **Detector magnetic field limited to max. 2T**
- Compensating solenoid close to the IP
- Magnetic shielding around the final focus quads

Luminosity counter (makes use of Bhabha e+e- \rightarrow e+e-), front face at 1.2 m from IP

FCC-ee tracking accuracy

Precision mostly driven by physics at the Z-peak

Aim:

- Several 10^{-5} to 10^{-6} type of precision measurements
	- $\sin^2 q_W$, to 6×10^{-6} , $a_{QED}(m_Z)$ to 3×10^{-5} , m_Z to 100 keV, Γ_Z to 100 keV
	- (also m_w to 500 keV, ...)
- Beam energy spread (0.13% at the Z pole) to be measured with relative precision of a few per mille (using $\mu^+\mu^-$ events).
- **⇒ Stringent constraints on the accuracy of the tracker**
- **Angular resolution** $\sigma(\theta)$ **,** $\sigma(\varphi) \leq 0.1$ **mrad for 45 GeV muons**
- Momentum resolution $\sigma(1/p)$ of \sim 2-3 10⁻⁵ GeV⁻¹
- **The tracker needs to be as light as possible**

(continuous operation impacts on the cooling and thus on material budget)

Options:

- **Silicon technology**
- **Wire Chamber technology**
- TPC not compatible with 20 ns bunch crossing frequency

more on FCC-ee tracking accuracy

 $Vs = 365$ GeV:

Top quark couplings from lepton angular and momentum distributions

=> Momentum resolution $\sigma(1/p)$ must be better than 10^{-4} GeV⁻¹

$Vs = 240$ GeV:

A factor \sim 1.5 can be gained on the HZ cross-section and the HZZ coupling precisions if the resolution is improved to 3×10^{-5} GeV⁻¹

$Vs = 91$ GeV:

Further improvement, to about $1-2 \times 10^{-5}$ GeV -1 could bring even better (faster) accuracy to measurement of **beam energy spread at the Z pole**. (would require larger B-field, larger tracker radius, smaller Si pitch).

Particle-flow capabilities and energy resolution:

- **Transverse segmentation ~few cm** : separate clusters from different particles in jets
- **Longitudinal segmentation** : identify or even track electron/photon and hadron showers
- σ(E) stochastic term **~10%√E for e, γ and ~30%√E for pions**
- Inside solenoid coil (or alternatively, extremely thin coil $\langle 1 \text{ X}_0 \rangle$

Balloon experiment magnet

Detector options currently under study:

- **Fine-grained calorimeter à la CALICE**
	- Si-W FCAL
	- HCAL (currently same Scintillator+SiPM/steel option as CLIC)
- **Dual readout calorimetry**
	- Would require R&D for longitudinal separation (wrt present RD52 Dual Readout R&D)

Adaptation of the CLIC detector for FCC-ee

- Instrumentation up to ± 150 mrad
- Smaller beam pipe radius (15 mm)
	- \Rightarrow Inner pixel layer closer to IP (radius 17 mm)
- Solenoid field 2 T
	- \Rightarrow Larger tracker radius (1.5 \rightarrow 2.2 m)
- Lower energies
	- Thinner HCAL (4.2 m \rightarrow 3.7 m)
- Continuous operation => increased cooling
	- \Rightarrow Thicker pixel layers (~+50%)
	- \Rightarrow Flat pixel discs (no spirals)
	- => Reduced calorimeter granularity

Performance validation ongoing

\approx d0 resolution

FCC-ee detector design #2 : IDEA

Vertex Si detector

With light MAPS technology 7 layers, up to 35 cm radius

Ultra light wire drift chamber

4m long, 2 m radius, 0.4% X_0 112 layers with Particle ID

One Si layer for acceptance determination Precise tracking with large lever arm barrel and end-caps

Ultra-thin 20-30 cm solenoid (2T) Acts as preshower $(1 X_0)$ or 1 X_0 Pb if magnet outside calo

Two μ -RWell layers

Active preshower measurement

Dual readout fibre calorimeter 2m thick, longitudinal segmentation **Instrumented return voke**

√s = 91 GeV: Drift chamber may drive requirements linked to large data flow.

FCC-ee forward luminosity calorimeter

Luminosity needs to be measured to very high accuracy

- •Few 10^{-5} at the Z pole
- •Few 10^{-4} at the tt threshold

Forward calorimeter to measure Bhabha scattering, adapted from ILC/CLIC design

- Placed closer to the IP (z < 1.2 m) and made smaller
- Centred around the outgoing beam

Depth 10 cm (1.05 to 1.15 m) Radius from 5.4 to 14.2 cm 30 layers $(1X_0)$ of 3.5 mm W + 1 mm Si 32×32 Si pads in (R, ϕ): 3×10^4 channels

Positioned with $1 \mu m$ accuracy

Total angular coverage: 45-95 mrad Loose acceptance: 63-83 mrad Tight acceptance: 68-78 mrad $\sigma(e^+e^- \rightarrow e^+e^-) = 6-13$ nb

FCC-ee flavour tagging and particle ID

$Vs = 91$ GeV:

~1012 Z →**bb events at the FCC-ee**

- \Rightarrow large potential for heavy flavour physics
- \Rightarrow e.g. b to stt transition, to study the possible low-significance LHC_b effects with large statistics, or $Bs \rightarrow \tau^+\tau^-$ measurement with 100,000 events.
- \Rightarrow **Particle ID** (π, K, p, e) becomes an important feature for the tracker (wire chamber OK, not sure about Si Tracker).

√s = 240 GeV, √s = 350 (365) GeV:

Aim for per-mille precision of Hbb, Hcc, and Hgg couplings

- => excellent **flavour tagging** required
	- currently beam pipe radius of 1.5 cm
	- currently pixel pitch 25×25 μ m² assumed
		- ⇒ might need to improve further

Do not forget the software tools

Design of future experiments requires:

Flexible software infrastructure for Geant4-based simulation and full reconstruction

Components of FCC (ee, hh, eh) and iLCSoft software frameworks

Future: bring the CLIC and FCC software tools closer together Requires high-level reconstruction

- Track reconstruction
- Particle flow reconstruction with fine-grained calorimetry
- Flavour tagging

Challenges generally larger for FCC-hh than for CLIC/FCC-ee

dd THANK YOU

High cross-sections for **colored-states** Superior sensitivity for **electro-weak states**

Allpix² silicon simulation framework

- Modular simulation framework for silicon tracking detectors
- Simulates full chain from incident radiation to digitized hits
- Modern and well-documented C++ code
- Easy-to-use description of detector models, supports full beam telescope setups
- Full Geant4 simulation of charge deposition \bullet
- Fast charge propagation using drift-diffusion model, can import electric fields in the TCAD DF-ISE format
- Simulation of HV-CMOS sensors with capacitive coupling
- Easy to add new modules for new digitizers, other output formats, etc.
- For Introduction, User manual and code reference visit: \bullet https://cern.ch/allpix-squared
- Allpix² tutorial at BTTB Zurich (January 16-19, 2018): https://indico.desy.de/event/bttb6

Beam telescope with tilted DUT

MIP in underdepleted HV-CMOS pixel sensor 0.2 $z \pmod{z}$ 0.15 0.1 0.05 Ω -0.05 -0.1 -0.15 -0.2 $0¹2$ 0.2

0.1

Caribou multi-chip modular r/o system

- Caribou universal r/o system (BNL, UniGE, CERN)
- Target: laboratory and high-rate test-beam measurements
- Generic DAQ Software Peary
- Modular concept:
	- Xilinx FPGA evaluation board 7C706 with ARM Cortex-A9 processor \rightarrow FPGA code reduced to minimum \rightarrow System-on-Chip (SoC) runs full Linux stack and actual Peary DAQ software, easily customizable
	- Generic periphery board (CaR) \bullet \rightarrow Stable voltages, various communication standards, ADCs for monitoring
	- Project specific chip boards: \bullet currently supporting CLICpix2, C3PD, FEI4, H35Demo, ATLASPIX

 \rightarrow cheap, minimum functionality: routing, chip-specific buffers

Open hardware / firmware / software: https://gitlab.cern.ch/Caribou/

CaRIBOu with CLICpix2 r/o ASIC

CLIC readout electronics requirements

^a By combining with different subdetectors in offline reconstruction 2 ns will be achieved.

^b The 3D TPC reads out 1000 voxels per channel for each bunch train.

^c All cells measure a signal for each bunch crossing.

CLIC accelerator environment

luminosity spectrum

Beamstrahlung \rightarrow important energy losses right at the interaction point

Most physics processes are studied well above production threshold \Rightarrow profit from full spectrum

Luminosity spectrum can be measured in situ

using large-angle Bhabha scattering events, to 5% accuracy at 3 TeV Eur.Phys.J. C74 (2014) no.4, 2833

$e^+e^- \rightarrow H^+H^- \rightarrow t\overline{b}b\overline{t} \rightarrow 8$ jets

1.2 TeV background in reconstruction window $(>=10 \text{ ns})$ around main physics event 100 GeV background after tight cuts

beam-induced background rejection (2)

Beam-induced background from $\gamma \gamma \rightarrow$ hadrons is further reduced by applying **adapted jet reconstruction algorithms**

Example: *squark study* at $\sqrt{s} = 3 \text{ TeV}$ (with assumed squark mass of 1.1 TeV)

Traditional Durham-ee jet algorithm inadequate <=> use of "LHC-like" jet algorithms effective

From Eur.Phys.J. C75 (2015) no.8, 379, see also arXiv:1607.05039

EP R&D kick-off, November 20, 2017 and the control of the

and timing cuts

The FCC-ee central detector

With 100,000 Z / second / detector, expect more than 2×10^{12} Z / year Statistical accuracies on cross sections, asymmetries, etc. of 10⁻⁵ or better Experimental uncertainties must be controlled at this level too Demands state-of-the-art performance for all detector subsystems

Vertex detector

Excellent b- and c-tagging capabilities : few μ m precision for charged particle origin Small pitch, thin layers, limited cooling, first layer as close as possible from IP

Tracker

State-of-the-art momentum and angular resolution for charged particles.

Typically $\sigma(1/p) \sim 2 - 3 \times 10^{-5}$ GeV⁻¹ and $\sigma(\theta, \phi) \sim 0.1$ mrad for 45 GeV muons

Almost transparent to particles (as little material as possible)

Particle ID is a valuable additional ability

Calorimeters

Good particle-flow capabilities and energy resolution

Transverse segmentation \sim cm : separate clusters from different particles in jets Longitudinal segmentation : identify or even track electron/photon and hadron showers $σ(E)$ ~ 10% VE for e, $γ$ and ~30% VE for pions

Inside solenoid coil, or alternatively, extremely thin coil

Instrumented return yoke OR large tracking volume outside the calorimeters

Muon identification and long-lived particle reconstruction

... from FCC-ee meeting 15/11

Francesco Grancagnolo (INFN), Mogens Dam (University of Copenhagen (DK):

- Very light tracker with good momentum and impact parameter resolution
	- Silicon: solution for cooling
	- Wire chamber
- Particle ID (π, K, p, e)
- Very thin detector solenoidal coil
	- Possibility to have coil before calorimetry
- **Calorimetry**
	- Segmentation in double readout calorimeters
- **Fast readout of Si detectors**
	- VTX: 100 ns; luminomiters: 20 ns
- **Mechanics for very busy forward region**
	- Luminomiter support, etc.
- Very large data flow
	- 100 kHz of Z production
- **Online and offline computing**
	- Very large data volumes