

BEAM DIAGNOSTICS (DESTRUCTIVE METHODS)

- Demands for beam diagnostics
- Beam profile measurement
- Emittance measurement
- Beam Current measurement

keroft Institute Demand for beam diagnostics

- Essential for any accelerator
- 'Organ of sense'
- Deal with real beam with imperfections
- Three categories
 - Reliable, quick measurements for general functionality, e.g. current transformer
 - For a daily check of performance and stability, e.g. profile determination
 - Complex instrumentation, e.g. Emittance measurement

P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics, Joint University Accelerator School, January – March 2012

Beam quantity		LINAC, transfer line	Synchrotron
current I	general	transformer (dc, pulsed)	transformer (dc)
		Faraday cup	
	special	particle detector	normalized pick-up signal
		(Scint. IC, SEM)	
position \overline{x}	general	pick-up	pick-up
	special	using profile measurement	cavity excitation (e^{-})
profile x_{width}	general	SEM-grid, wire scanner	residual gas monitor
		viewing screen, OTR-screen	synch. radiation (e^{-})
			wire scanner
	special	grid with ampl. (MWPC)	
trans. emittance	general	slit grid	residual gas monitor
ϵ_{trans}		quadrupole scan	wire scanner
	special	pepper-pot	transverse Schottky pick-up
			wire scanner
momentum	general	pick-up (TOF)	pick-up
p and $\Delta p/p$		magn. spectrometer	
	special		Schottky noise pick-up
bunch width $\Delta \varphi$	general	pick-up	pick-up
			wall current monitor
	special	particle detector	streak camera (e^{-})
		secondary electrons	
long. emittance	general	magn. spectrometer	
ϵ_{long}		buncher scan	
	special	TOF application	pick-up + tomography
tune, chromaticity	general	_	exciter + pick-up (BTF)
Q, ξ	special		transverse Schottky pick-up
beam loss r_{loss}	general	particle detector	
polarization P	general	particle detector Compton scattering with laser	
	special		
luminosity L	general	particle detector	

A 'typical' Accelerator Diagnostics

- Material sciences
- Thermodynamics
- □ Electro-Magnetism
- **Optics**

- Nuclear Physics
- □ Vacuum science

A picture of the mobile test bench including some measurements, as provided for the commissioning of the high current injector at GSI in 1999.

Challenge in beam diagnostics

- Better resolution (time/space)
- □ (single) photon resolution
- Improved radiation hardness
- Least invasive
- Able to cover variety of beams

Beam Profile Monitoring

Beam profile

General distribution:

Profile:

$$f(x) = \int_{-\infty}^{+\infty} f(x, y) dy$$
$$f(y) = \int_{-\infty}^{+\infty} f(x, y) dx$$

Rms beam size:

$$x_{rms}^{2} = \langle x^{2} \rangle = \frac{1}{N_{0}} \int_{-\infty}^{+\infty} x^{2} f(x) dx$$
$$y_{rms}^{2} = \langle y^{2} \rangle = \frac{1}{N_{0}} \int_{-\infty}^{+\infty} y^{2} f(y) dy$$

Example: Gaussian distribution

General distribution:

$$f(x,y) = \frac{N_0}{2\pi\sigma_x\sigma_y} e^{-(\frac{x^2}{2\sigma_x^2} + \frac{y^2}{2\sigma_y^2})}$$

Profile:

$$f(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \frac{N_0}{\sqrt{2\pi}\sigma_x} e^{-\frac{x^2}{2\sigma_x^2}}$$
$$f(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \frac{N_0}{\sqrt{2\pi}\sigma_y} e^{-\frac{y^2}{2\sigma_y^2}}$$

Rms beam size:

$$x_{rms}^{2} = \langle x^{2} \rangle = \frac{1}{N_{0}} \int_{-\infty}^{+\infty} x^{2} f(x) dx = \sigma_{x}^{2}$$

$$y_{rms}^{2} = \langle y^{2} \rangle = \frac{1}{N_{0}} \int_{-\infty}^{+\infty} y^{2} f(y) dy = \sigma_{y}^{2}$$

Measure the beam profile

Intercepting methods

- Scintillating screen
- Optical transition radiation (OTR)
- Wire scanner
- Scraper

Non intercepting methods

- Synchrotron radiation
- Laser wire
- Rest gas ionisation
- Beam induced fluorescence
- Gas jet beam profile monitor

The Cockcroft Institute of Accelerator Science and Technology Scintillating screen

- Simply
- Cheap
- Effective

Credit: B. Walasek-Höhne, GSI and G. Kube, DESY

The Cockcroft Institute Science and Technology Scintillating materials

Abbreviation	Material	Activator	max. emission	decay time
Quartz	SiO_2	none	optical	< 10 ns
	CsI	Tl	550 nm	$1 \mu s$
	ZnS	Ag	450 nm	$0.2~\mu s$
Chromolux	Al_2O_3	$^{\mathrm{Cr}}$	700 nm	100 ms
	Li glass	Ce	400 nm	$0.1~\mu \mathrm{s}$
P43	Gd_2O_2S	Tb	545 nm	1 ms
P46	$Y_3Al_5O_{12}$	Ce	530 nm	$0.3~\mu s$
P47	$Y_2Si_5O_5$	Се	400 nm	50 ns

The Cockcroft Institute Some example of scintillating light

The Cockcroft Institute Science and Technology Scintillating light yield

Materials

Energy

FIG. 1. Experimental setup at INFN-LNS.

J. Harasimowicz et al., Rev. Sci. Instr. 81 (10), 2010

Shows sub femtoampere range for 200 keV proton beam Much smaller in the 50 keV range

Optical Transition Radiation

Credit: D. Morris, et al., TRIUMF

E. Bravin, Cern Accelerator School on Beam Instrumentation 2-15 June 2018, Tuusula, Finland

- Radiation is emitted when a charged particle crosses the boundary of different dielectric properties
- Radiation has defined angular distribution
- Radiation is radially polarised

Wire scanner

Scans a thin wire or a needle across the beam. Detects secondary emission current or high energy secondary particles (scintillator + PMT)

SLAC SLC high resolution 3 axis scanners

CERN "flying wires"

SEM Grid

- Similar to wire scanner
- □ The SE current from each wire or strip is acquired independently
- Wire spacing down to a few hundreds microns
- Single shot measurement

slit scanner

- Similar to wire scanner
- Beam pass through a slit and then the intensity is measured by faraday cup or scintillator.
- Slit could be vertical or horizontal
- Useful for low energy and low intensity (I>> I_{SEM})

- □ Similar to wire scanner
- But deal with lower intensity
- Measured CDF instead of PDF

Fig. 4. A model of the horizontal scraper blade window in the extended position for use in ELENA [17].

J. Hunts, et al., NIMA, Vol 896, Pages 139-151.

Beam profile of high intensity beams

Energy deposition

- Signals are often proportional to the deposited energy
- Energy deposition can cause damage to the instrument

10um 2e10_9X8_B_7

Damaged screen

Damaged SEM Grid

Ideally: Non-invasive.

Damaged OTR screen

Emittance measurement

Emittance

- The emittance describes the beam quality, assuming linear behavior due to second order differential equation.
- It is defined as the area in phase space where the particles occupied (generally an ellipse).
- Commonly used Definition in horizontal plane (RMS Emittance):

$$\varepsilon_{x} = \sqrt{\langle x^{2} \rangle \langle x'^{2} \rangle - \langle xx' \rangle^{2}}$$

Emittance measurement

- Why measuring emittance?
 - Emittance is one of the key parameter in accelerator
 - Luminosity of colliders for particle physics
 - Brightness of synchrotron radiation sources
 - Wavelength range of free electron lasers
 - Resolution of fixed target experiments
- Methods
 - Quadrupole scan
 - 3 screen method
 - Pepper pot
 - Tomography

The Cockcroft Institute Beam optics

If you know the beam optics, you can get the emittance from your profile measurement.

$$\varepsilon_x = \frac{1}{\beta_x(s)} \left[\sigma_x^2 - \left(D(s) \frac{\Delta p}{p} \right)^2 \right] \text{ and } \varepsilon_y = \frac{\sigma_y^2}{\beta_y(s)}$$

Cockcroft Institute Multi-slit measurement

- Needs high resolution profile detector
- Must make sure that profiles don't overlap

$$X_0' = \frac{2\sigma - d}{L}$$

Very old idea, was used with photographic plates

Slit size
$$= d$$

Beamlet rms size = σ

The Cockcroft Institute of Accelerator Science and Technology

□ Transfer matrix

$$\begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix}$$

$$< x_1^2 > = < (x_0 + L_1 x_0')^2 > = < x_0^2 + 2L_1 x_0 x_0' + x_0'^2 >$$

= $< x_0^2 > + 2L_1 < x_0 x_0' > + < x_0'^2 >$

Tutorial: Can you derive the emittance?

Quadrupole scan

Tomographic Phase Space Reconstruction

Projected / Slice, using Quadrupoles / Solenoids with Space Charge

D. Stratakis, R.A. Kishek, S. Bernal, et al., Physics of Plasmas 17, 056701 (2010).

VA school on Low Energy Antimatter Physics 25-29 June 2018

Phase space tomography to study halo

H. Zhang, PhD thesis, university of Maryland, 2014

Transverse emittance measurement methods

Technique	Pros	Cons
Basic Optics	Simple to implement. Linear space charge OK. Small or large beams.	RMS emittance only. No phase-space.
Pepper-pot	Simple to implement. Space charge OK. No beam optics.	Coarse phase-space. Impractical for small beams.
Quad Scan	Different schemes. Easy computation.	Space charge limits. No phase-space. Linear optics assumed.
Slit-Wire	Phase space info. Integrated or t-resolved. Space charge OK.	S/N problems. Hard to implement. Comp. intensive.
Tomography	Detailed phase space info. Linear optics/sp. charge.	More beam manipulation required. Computationally intensive.

Beam Current Monitoring

Current measurement

What is the beam current?

$$I_{beam} = \frac{qeN}{t} = \frac{qeN}{l} \cdot \beta c$$

In an accelerator the current is formed by N particles of charge state q per unit of time t or unit of length l and velocity $\beta = v/c$.

- Measurement methods
 - Faraday cup
 - Wall current monitor
 - Current transformer
 - Cryogenic Current Comparator (CCC)

Faraday cup

- The Faraday Cup destructively intercepts the beam
- DC coupled! (With just a resistor the signal is Vout = Ibeam*R)
- Low current measurements possible e.g., USR fA!
- Problem with secondary electrons:
 - Use long cup or voltage suppression or magnetic field
- If not properly terminated -> very high voltage (beam potential)
- Must process beam power

- Stop main beam in capture electrode,
- Secondary electrons are generated,
- Repelling electrode pushes secondary electrons back onto the electrode,
- Limitations:
 - Beam energy ?
 - Sensitivity/noise ?
 - Antimatter?

The Cockcroft Institute of Accelerator Science and Technology Faraday cup with water cooling

For higher intensities water cooling may be needed

Thank you for your attention

Reference

- Workshops, conference and schools
 - BIW, IBIC
 - DITANET, OPAC, USPAS, JUAS, JAS, CAS
- J. Harasimowicz et al., Rev. Sci. Instr. 81 (10), 2010
- H. Koziol, BEAM DIAGNOSTICS FOR ACCELERATORS
- P. Forck, Lecture Notes on Beam Instrumentation and Diagnostics, Joint University Accelerator School, January March 2012
- J. Hunts, et al., NIMA, Vol 896, Pages 139-151.
- U. Raich, Accelerator Beam Diagnostics, USPAS, Albuquerque NM, June 23-26, 2009
- D. Stratakis, R.A. Kishek, S. Bernal, et al., Physics of Plasmas 17, 056701 (2010)
- H. Zhang, PhD thesis, university of Maryland, 2014
- □ E. Bravin, Cern Accelerator School on Beam Instrumentation 2-15 June 2018, Tuusula, Finland
- C. Welsch, Beam Diagnostics, CIPAS, 2015
- J. Harasimowicz, et al., PRSTAB, 15, 122801 (2012)
- S. Bernal, Emittance and Emittance Measurements, USPAS08, Beam Dynamics Experiments on the University of Maryland Electron Ring

