Silicium-Tungsten ECal Development at LAL: Control and Readout Electronics

D. Breton, J. Jeglot, J. Maalmi, P. Rusquart, A. Saussac (SERDI, LAL)
A. Thiebault, J. Bonis, D. Douillet, A. Gallas, C. Bourgeois (SDTM, LAL)
A. Irles, R. Poeschl, D. Zerwas (LAL)
Introduction

- Latest developments proposed by LAL group for a Silicon-Tungsten electromagnetic Calorimeter in ILD.

- AIDA2020 WP14 Deliverable 14.6: Adaptation of readout system for operation in compact LC detectors

 1. Power Pulsing: Proposal to use new ultra-flat capacitors on all ASUs of the Slab (order 10 ASUs per slab).

Ecal Constraints

The Challenge: a very Compact Detector!

Constraints:

- Spatial constraints:
 - limited space between layers
 - Limited space at the end of a slab
 - Control & Readout electronics at the extremity of the Slab
 - Signal Integrity over the Slab

- Low power consumption: power pulsing

- Thermal uniformity

- Mechanical Assembly process
Ecal Electronics
Space Constraints

Space constraints for the Active Sensor Units (ASUs):
- Maximum Height for Electronics (including PCB): depends on number of layers (20-30)
 - For final design: x.x mm?
 - For prototype: (PCB + components for the SKIROC-2 BGA option): ~ 3mm

Current ASU Electronic board design:
- PCB thickness (FEV 12): 1.6 mm
- SKIROC BGA height: 1.4 mm
 Total: 3 mm

Space constraints for the Slab Interface Board (SL-Board):
- L-shape (even and odd ASUs) Dimensions: see below.
- Maximum Height: ~ 12 mm
Power-Pulsing: New ultra-flat Capacitors

Proposal: new ultra-flat capacitors on all ASUs for the AVDD decoupling resulting in:

- Peak current reduction: especially through the connectors
- No voltage drop along the slab
- Homogeneous peak power dissipation during power pulsing.

- 400 mF capacitor/ 15A (peak Current) at the end of the SLAB to 140 mF / 1.5 A per ASU.

Reminder of power consumption values:
- DVVD (3.3V) 11 mA/chip, total 180 mA/ASU
- AVDD (3.3V) / Chip: 90 mA/chip during ACQ, 20 mA during Conversion, 0.01 mA idle measured in house and compared with measurements by Stephane Callier (Omega)

- Distributing the capacitors along the slab permits reducing current between ASUs by a factor ~50-100.
- The current peak is local.
- The current delivered for charge reloading of the capacitors will be actively limited at the extremity of the Slab.
Ultra-Thin Supercapacitor
DMH series
DMHA14R5V353M4ATA0
35 mF / 4.5 V

Life time has to be checked, depends on voltage and temperature...

Integrated capacitors permit the peak current of ~1.5A to be local during power pulsing => recharge is limited to a total of ~150mA...
Control & Readout Electronics

The new developments for the control and readout electronics to satisfy D14.4 (space constraints of an LC Detector):

- **SL-Board**: Digital interface board situated at the extremity of the Slab, based on a MAX10 FPGA, which handles:
 - Control & readout of the chained ASUs (SKIROC interface)
 - Interface to the CORE acquisition module through a kapton cable (rigid+flexible) in order to have flexibility for the connection inside the detector (45° angle)
 - Local 40MHz oscillator and remote USB interface for standalone control of the Slab (permits independent testing of Slab interface and kapton communications).

- **CORE-Module**: Control & Readout module that handles a column of Slabs, for the prototype phase.

CORE Module : Control & Readout Module

SL-Board

Even ASU
Odd ASU

SL-BOARD

SLAB extremity

Hirose FX18-100 pin, 0.8 pitch

Kapton cable Rigid+Flexible

USB

Gbit UDP

Optical link

HDMI from CCC
Core Module connector:
7 common differential pairs for sensitive signals, 30 individual pairs for control and readout, 14 common lines, GND

<table>
<thead>
<tr>
<th>Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clk</td>
</tr>
<tr>
<td>Trigger</td>
</tr>
<tr>
<td>Start/Stop</td>
</tr>
<tr>
<td>Busy</td>
</tr>
<tr>
<td>Irq</td>
</tr>
<tr>
<td>TCK</td>
</tr>
<tr>
<td>TMS</td>
</tr>
<tr>
<td>TDI</td>
</tr>
<tr>
<td>TDO</td>
</tr>
<tr>
<td>SCK</td>
</tr>
<tr>
<td>SDI</td>
</tr>
<tr>
<td>SDO</td>
</tr>
</tbody>
</table>

Signals

| Rx_i |
| Tx_i |
| ADD[0]|
| ADD[1]|
| ADD[2]|
| ADD[3]|
| Spare ...
| GND ...

Full design of ILD compatible electronic services started that includes parts described above
The Acquisition Module

The Control & Readout Acquisition system will be based on an existing mother board that handles:

- Control & Readout through USB/Ethernet/Optical fiber
- Distribution of the clock and fast commands

- There are existing low level C-libraries. (LAL-ML protocol)
- This LAL development is already used for other experiments.
- The Detector specific CORE Daughter board is under development as well as its Kapton cable.

Ex of a Long Slab: 8 ASUs

Diagram Details:

- **HV**
- **SL-BRD**
- **ASU/WAFER**
- **Gradconn Interconnexion**
- **HDMI for current CCC interface**
- **Existing CORE MOTHER**
- **Little adapter board**

Legend:

- ASU/WAFER: Active Silicon Units/Wafers
- Gradconn: Gradational Connection
- HDMI: High Definition Multimedia Interface
Global Architecture Scheme

Overall design
- compatible with ILD constraints
 - Little space consumption for connection between slabs and CORE Modules
 - CORE Mother can be placed at the forefront of barrel, Daughter between Ecal and Hcal
- ... assures compatibility with other AIDA2020 developments
 => Paves way for combined beam tests (other calos, trackers etc.)
- Expect first version of system to be in place for summer 2018
- SL-Board is delivery for AIDA2020 and P2IO/HIGHTEC

CCC: Clk and Control Card
CORE Module/Mother/Daughter : Control and Readout
SL-BRD : Interface board to Slab

Control PC
- Gbit UDP/USB/Optical Fibre
- HDMI 1-5m
- Clk, Fast Commands

ZedBoard
- Serial Link To PC (RS232) (optional)
- Beam Control

Control & Readout Kapton

ASU/WAFER

~ 2 x 15 slabs

HV Kapton

Data : 40 /80 Mbits/s
Status of development:
SL_board

Design is well advanced:
• Board schematics is final
 • Main constraints: low power but good signal integrity
 • Based on Altera MAX10 mixed CPLD/FPGA low power technology
 • High versatility for test and debugging
• PCB design:
 • Placement is difficult due to reduced space but well on track
 • Routing is already partially done
Status of development: CORE_kapton

Core Module connector (100 pins):
7 common differential pairs for sensitive signals, 30 individual pairs for control and readout, 14 common lines, GND

SL_board connectors (40 pins):
7 common differential pairs for sensitive signals, 1 individual pair for control and readout, 14 common lines, GND
Status of development: CORE_daughter

- **CORE_daughter**
- **Kapton interface** (100 pins)
- **Motherboard interface** (100 pins)
- **Cyclone IV FPGA**
- **Kapton buffers and transceivers**

- ~12 cm
- ~6 cm
Conclusion

- LAL group has been reinforced for the electronics developments since last summer.

- Proposal to use new ultra-flat capacitors on each ASU to
 - Reduce the peak current going through the connectors
 - To avoid voltage drop problems along the slab during the Power-pulsing
 - Lifetime of new capacitors to be verified

- Development of a new Control and Readout digital interface that fits the space requirements for the final design: SL-Board + Kapton cable.

- The acquisition module will be based on an existing CORE-Mother and a dedicated core daughter which is under development.

- Goal: to have a set of all the new boards by this summer.

- Deliverable D14.6 is on track