# Photon PID Efficiency with FCC-ee Detector

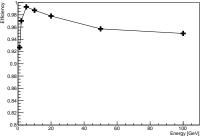
Oleksandr Viazlo

CERN

15 November 2017

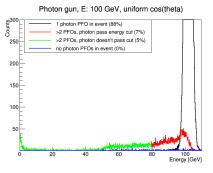
#### FCC-ee detector

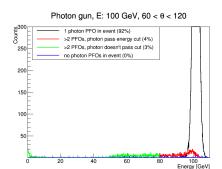
- FCC-ee machine energy regimes: Z, WW, HZ, tt (91.2 365 GeV)
- Detector design for FCC-ee is based on the CLIC detector


### Overall dimensions of CLIC and FCC-ee detectors

|                | CLIC                         |                   | FCC-ee                       |
|----------------|------------------------------|-------------------|------------------------------|
| VTX Barrel     | 31-60 mm                     | $\Longrightarrow$ | 17-59 mm                     |
| Tracker radius | 1486 mm                      | $\Longrightarrow$ | 2100 mm                      |
| ECAL thickness | 40 layers, 22 X <sub>0</sub> | $\Longrightarrow$ | 40 layers, 22 X <sub>0</sub> |
| HCAL thickness | 60 layers, 7.5 $\lambda_I$   | $\Longrightarrow$ | 44 layers, 5.5 $\lambda_I$   |
| Solenoid field | 4 Tesla                      | $\Longrightarrow$ | 2 Tesla                      |
|                |                              |                   |                              |

- Standartd calorimeter calibration with 10 GeV photons, 10 GeV muons and 50 GeV K0L, no software compensation
- Photon reconstruction training with Zuds 380 GeV sample


## Photon PID efficiency


- Samples: photon gun with isotrop  $cos(\theta)$  and  $\phi$  distribution: 1, 2, 5, 10, 20, 50, 100 GeV
- Efficiency definition:
  - correct reconstruction PFO type (pick most energetic PFO of correct type)
  - energy matching:  $|E_{MC} E_{PFO}| < 200\% \times \sqrt{E_{MC}} + 0.5 \text{GeV}$



| Energy<br>[GeV] | $N_{total}$ | fail energy<br>matching | fail type reconstruction |
|-----------------|-------------|-------------------------|--------------------------|
| 100             | 87249       | 3964                    | 434                      |
| 50              | 91116       | 3462                    | 450                      |
| 20              | 91121       | 1569                    | 431                      |
| 10              | 96993       | 652                     | 576                      |
| 5               | 99003       | 0                       | 692                      |
| 2               | 89121       | 0                       | 2656                     |
| 1               | 99027       | 0                       | 7260                     |
|                 |             |                         |                          |

## Photon PID efficiency





- Photon PFO reconstructed energy
- $\bullet~$  In  ${\simeq}10\%$  of events two or more PFOs are found  $\to$  4-5% effect of photon efficiency loss
- Effect is smaller in only barrel region (60  $< \theta <$  120)
- Is there a way to tune clustering algorithm?