Laser-Plasma Accelerators for Future Colliders

Eric Esarey

C. Schroeder, C. Benedetti, C. Geddes, J.L. Vay, W. Leemans BELLA Center LBNL

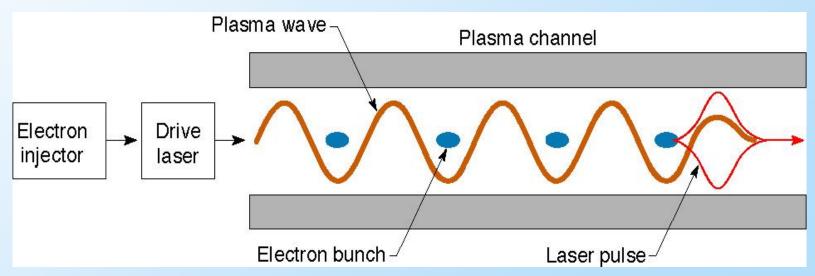
BERKELEY LAB

REA PER UNA 191 81

ACCELERATOR TECHNOLOGY & ATAP

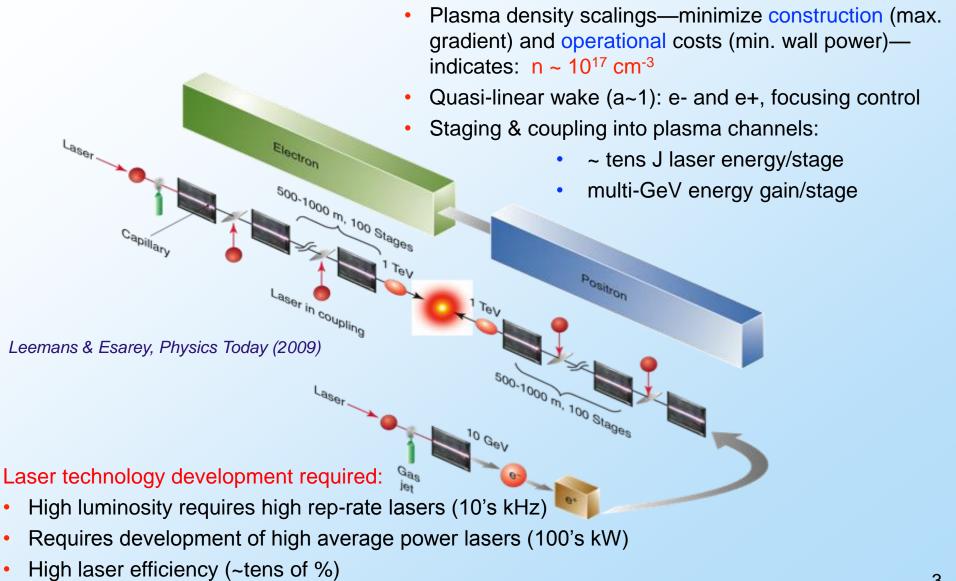
ALEGRO Workshop Oxford, UK, 26-29 March 2018

Supported by the U.S. DOE under Contract No. DE-AC02-05CH11231

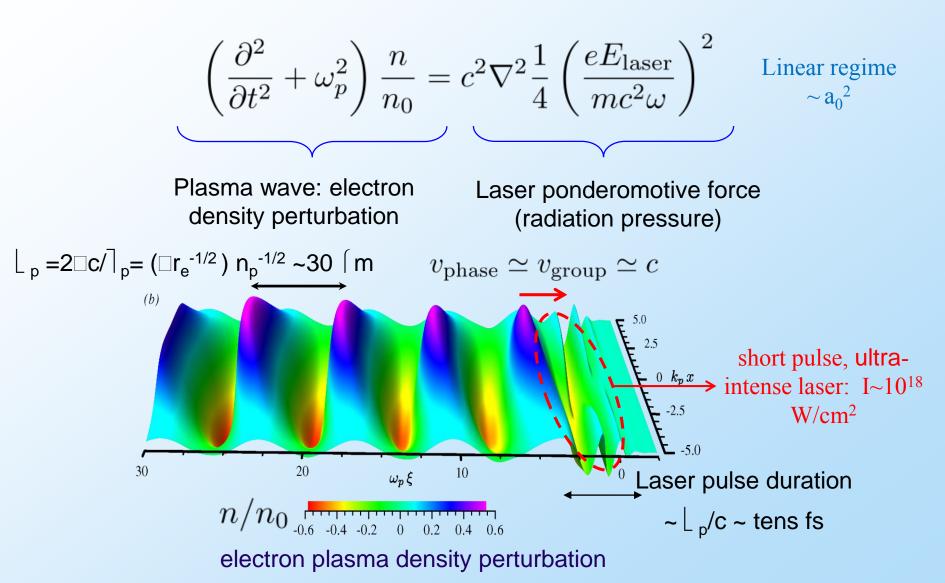


Outline

- LPA basics
- Scaling laws: Quasi-linear regime
- Zeroth-order picture of LPA collider assuming idealized physics
- Real-world physics that further complicate LPA collider
- Other concepts: multiple pulses


Laser-Plasma Accelerator

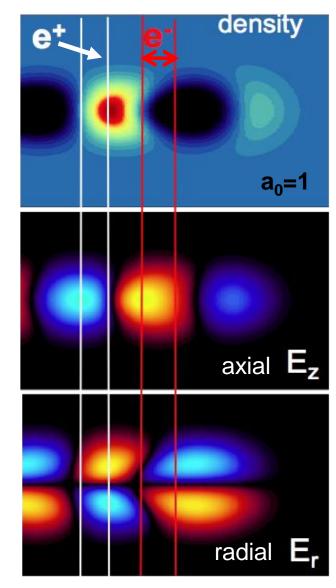
٠


Laser-plasma accelerator-based collider concept

Schroeder et al., PR ST-AB (2010); Schroeder et al., PR ST-AB (2012); Schroeder et al., NIMA (2016)

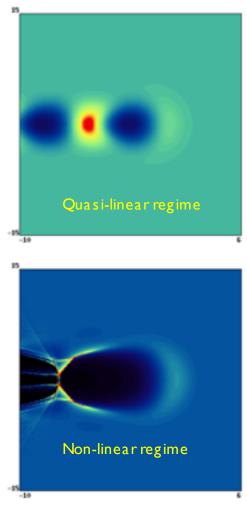
Laser-plasma accelerators (LPAs)

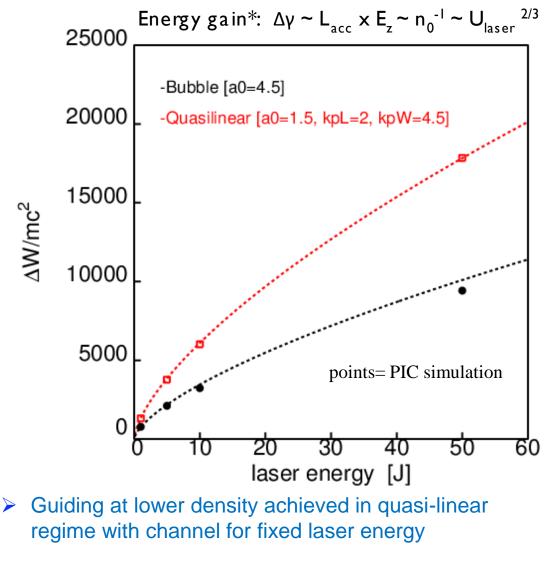
Tajima & Dawson, Phys. Rev. Lett. (1979); Esarey, Schroeder, Leemans, Rev. Mod. Phys. (2009)


Wake structure depends on laser strength

Bubble/blow-out

- Blowout regime
 - a₀ >> 1
 - very asymmetric
 - focuses e-
 - defocuses e+
 - self-trapping
 - self-guiding
- Quasi-linear
 - a₀ ~ 1
 - symmetric e+/e-
 - dark current free
 - channel required
 - tailor focusing forces via laser profile

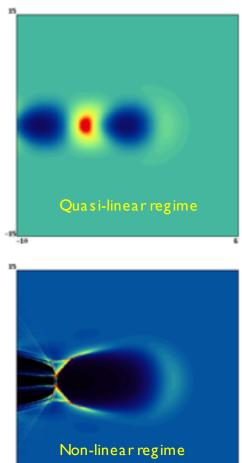

Quasi-linear

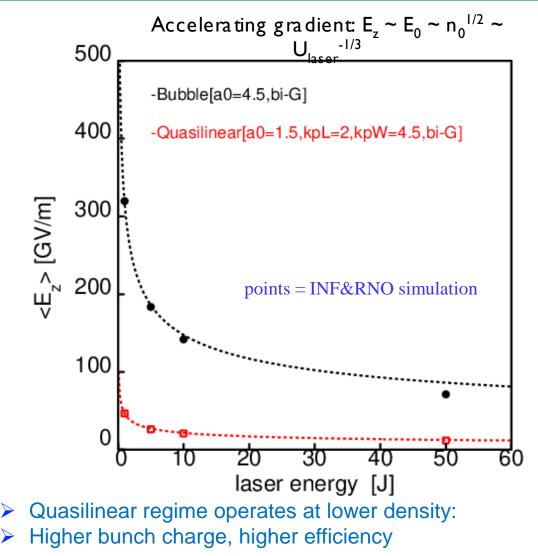


BERKELEY LAB

Laser-plasma accelerators can operate in non-linear (bubble) or quasi-linear regimes

electron plasma density

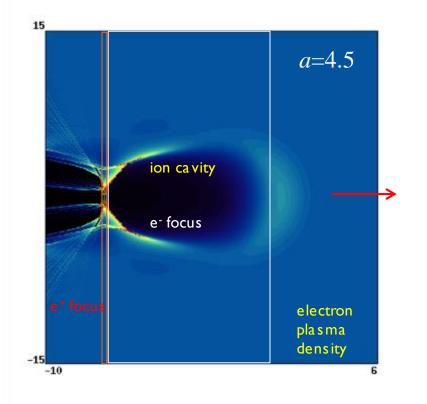


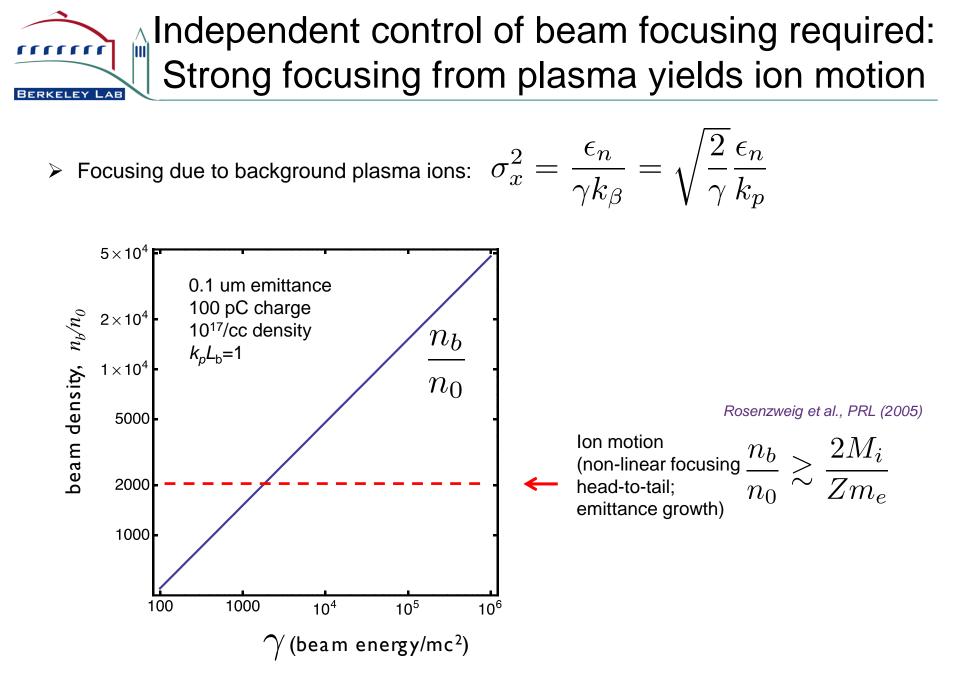

*Passive (i.e., no beam loading), short bunch $(k_p L_b = 0.2)$

BERKELEY LAB

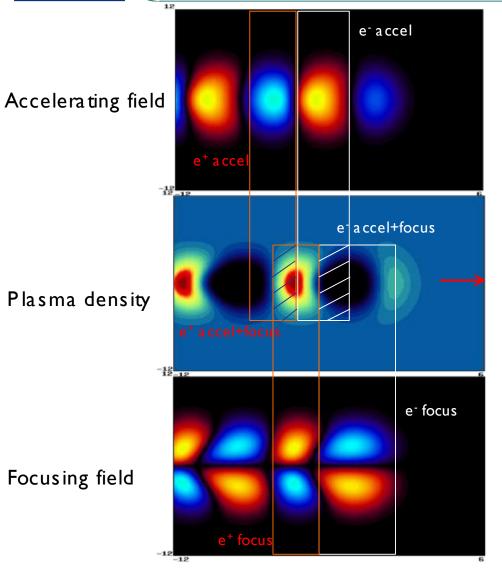
Laser-plasma accelerators can operate in non-linear (bubble) or quasi-linear regimes

electron plasma density





Positron beam quality preservation in highly-nonlinear regime difficult


- In nonlinear regime, laser can self-guide in plasma and generate large accelerating fields
 - \succ Condition for guiding: $a \sim (k_p w_L)^2/4$
 - > Peak field: $E_z \approx (mc\omega_p/e) a^{1/2}$

- High intensity (a²>>1)
- Forms ion cavity
- Self-trapping present (staging difficult)
- Strong laser evolution
- Electron focusing determined by background ion density
- Positron acceleration and focusing (with high beam quality preservation) difficult (nonlinear accelerating and focusing fields)

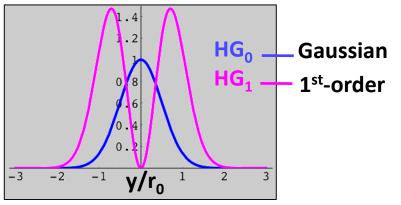
Quasilinear regime: e+ focus and acceleration, Independent control of focus and acceleration

- Quiver momentum weakly-relativistic (*a*~1)
- Region of accelerating/focusing for both electrons and positrons
- Stable laser propagation
- Independent control of accelerating and focusing forces:
 - Driver transverse profile $F_{\perp} \propto
 abla_{\perp} a^2$

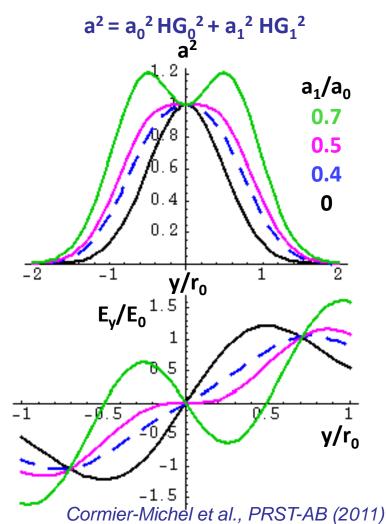
Cormier-Michel et al., PRST-AB (2011)

- Plasma channel profile

Schroeder et al., Phys. Plasmas (2013)

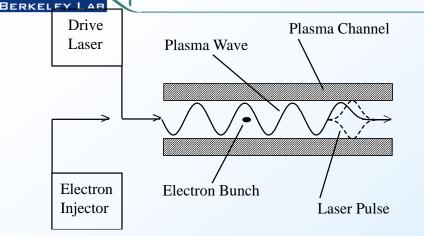


Quasilinear regime: shape transverse laser intensity for control of transverse wake


$$\frac{E_r}{E_0} = -k_p^3 \int d\xi' \cos(k_p(\xi - \xi')) \partial_r a^2 / 2 \propto \nabla_\perp a^2$$

Add Gaussian modes:

(all modes guided in parabolic plasma channel)



 Allows additional (independent) control of focusing forces (and matched beam spot)

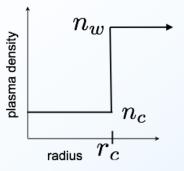
11

(near-) Hollow plasma channels: ultra-low emittance preservation

- Provides structure for laser guiding (determined by channel depth not on-axis density)
- Excellent wakefield properties in plasma channel and *independent* control over accelerating and focusing forces
 - Accelerating wakefield transversely uniform
 - Focusing wakefield linear in radial position and uniform longitudinally
- (Near-) hollow plasma channel geometry provides emittance preservation
 - Mitigates Coulomb scattering

Schroeder et al., Phys. Plasmas (2013)

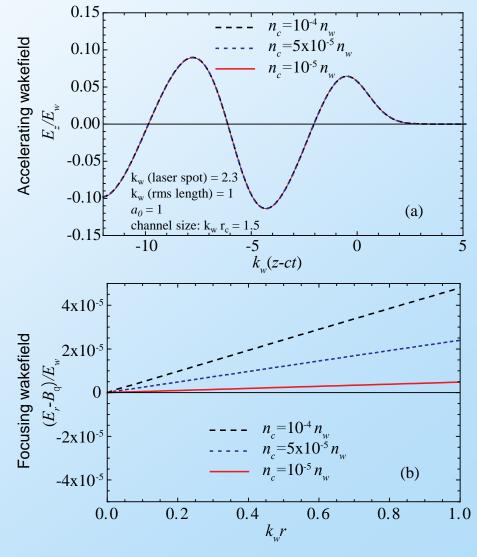
$$\epsilon_{nf} = \left[\epsilon_{ni}^2 + \frac{\sigma_x^2 r_e Z_w \beta_{\rm th}}{(E_z/E_w) r_c} \left(\gamma_f - \gamma_i\right)\right]^{1/2} \sim \left(\frac{r_e \beta_{\rm th} \gamma_f}{k_p}\right)^{1/2}$$


For relevant 1 TeV collider parameters: $\epsilon_{nf} \sim 10^{-9}~{
m m}$

Control of focusing force and beam density – prevents ion motion

Ion motion negligible if ratio of beam density to wall density is less than ion-electron mass ratio $(n_b/n_w) < M_i/m_e$

Near-hollow plasma channel: Independent control of acceleration and focusing

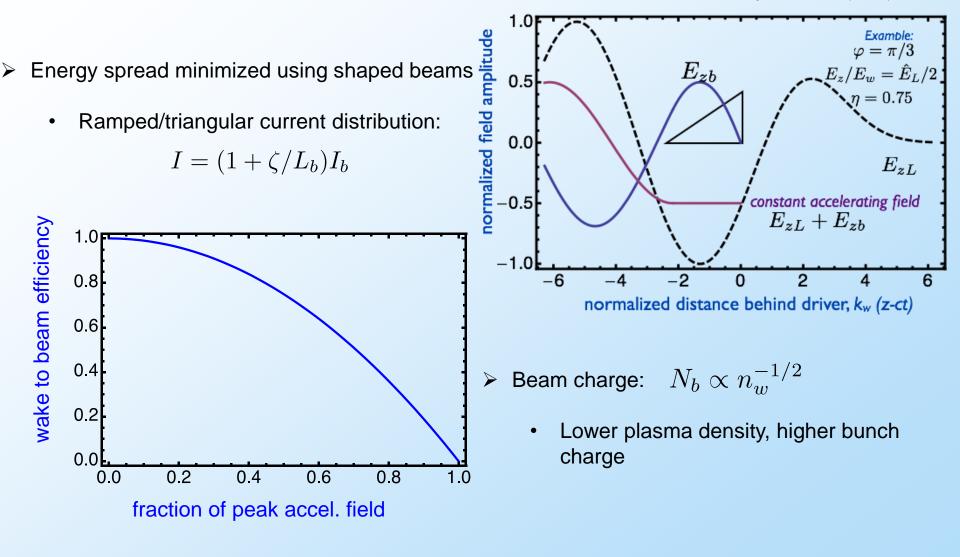


Accelerating wakefield set by wall density

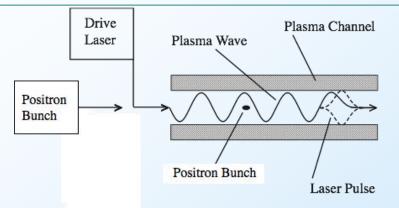
$$E_z \sim E_w = m_e c^2 k_w / e \propto \sqrt{n_w}$$

 Focusing (for electrons) wakefield set by channel density

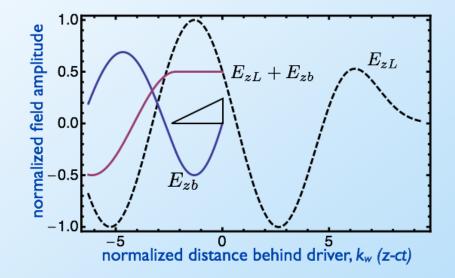
$$E_r - \beta B_\theta = E_c k_c r / 2 \propto n_c$$



Modeled with PIC code INF&RNO


Shaped beams required for high-efficiency acceleration

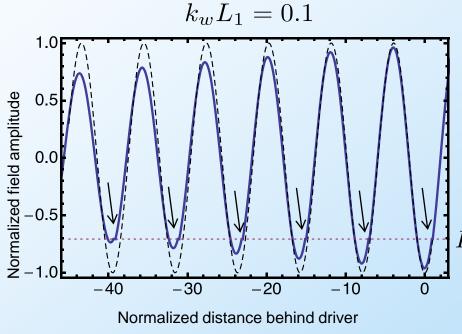
Schroeder et al., Phys. Plasmas (2013)

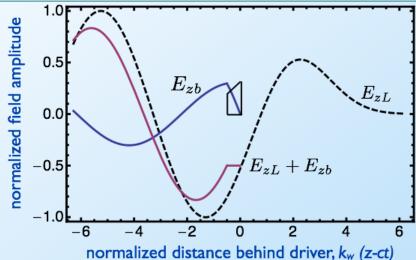


Positron beams accelerated in hollow plasma channel with external focusing

Acceleration of positron beam in quasi-linear regime in hollow plasma channel:

Provide external focusing for positrons




Bunch trains allow ultra-short bunch accel. with high efficiency, without energy spread growth

- Ultra-short beams suppress beamstrahlung
 - Beamstrahlung photons/electron

 $n_{\gamma} \propto \mathcal{L}^{1/3} \sigma_z^{1/3}$

Improved efficiency using bunch trains

 $\begin{array}{ll} \mbox{1 bunch:} & \mbox{6 bunches:} \\ \eta_1 \simeq 0.08 & \mbox{$\eta_{total} \simeq 0.5$} \end{array}$

$$E_z = E_L \cos(\pi/4) = E_L/\sqrt{2}$$

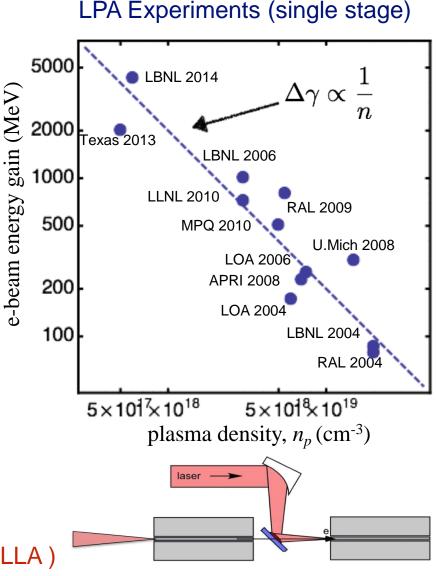
Using bunch trains, trade-off between efficiency and gradient, with no energy spread growth

LPA plasma density scalings: Staging required

Laser-plasma interaction (depletion) length:

$$L_{\rm acc} \sim \lambda_p^3 / \lambda_L^2 \propto n^{-3/2}$$

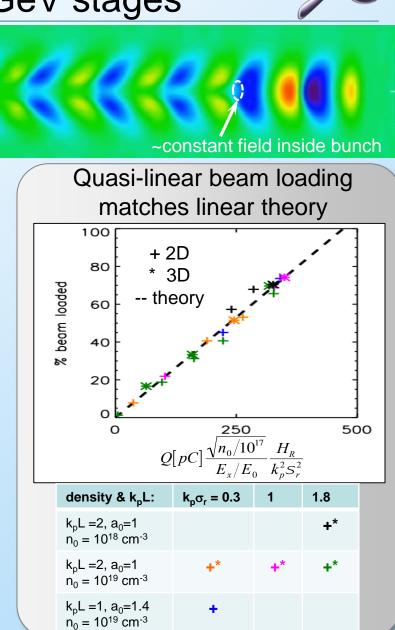
Accelerating gradient:


$$E \sim E_0 = (m_e c \omega_p / e) \propto \sqrt{n}$$

Energy gain:

$$W \sim (m c \omega_p / e) L_{\rm acc} \propto 1/n$$

For high-energy applications, laser depletion (and reasonable gradient) necessitates staging Scalings verified with simulations LPA Examples (single stage):


W ~ 1 GeV n ~ 10^{18} cm⁻³ L_{acc} ~ 3 cm U_{laser} ~ 1 J P_{laser} ~ 100 TW W ~ 10 GeV n ~ 10^{17} cm⁻³ L_{acc} ~ 1 m U_{laser} ~ 40 J P_{laser} ~ 1 PW (eg,BELLA)

Beam loading simulations predicts 300-500 pC for 10 GeV stages

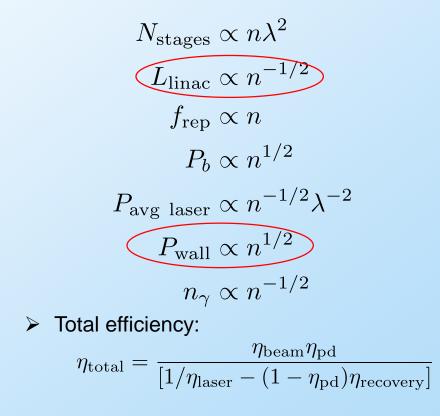
- Beam loading theoretical limit
 - e-bunch wake = laser wake
 - > Linear theory , $k_p \sigma_z < 1$, $k_p \sigma_r \sim 1$
 - > $N_b \sim 9x10^9 (n_0/10^{16} \text{ cm}^{-3})^{-1/2} (E_z/E_0)$
 - ➢ Ex.: N_b = 3x10⁹ (0.5 nC) for n₀ = 10¹⁷ cm⁻³ and E_z/E₀=1
- VORPAL PIC simulations
- > 500 pC at 10¹⁷ cm⁻³ for $k_pL=2$, $k_p\sigma_r \sim 2$
 - 10% of laser energy to electrons
- Bunch length & profile alters field inside bunch
 - flatten field across bunch reduces ΔE
 - focusing must be matched for emittance
- Ongoing: precise control w/shaped bunches
- * Cormier-Michel et al, Proc. AAC 2008, **Katsouleas PRA 1986

- Rate of events: (luminosity) x (collision cross-section)
- Luminosity: cross-section $\mu g^{-2} \rightarrow L[10^{34} \text{ cm}^{-2} \text{ s}^{-1}] \gg (E_{cm}[\text{TeV}])^2$

$$L = \frac{fN^2}{4\rho S_x S_y} = \frac{P_b}{4\rho E_{cm}} \frac{N}{S_x S_y}$$

- For fixed beam power, $P_b=2fN_b(\gamma mc^2)$, transverse beam density must be increased
- Limitations:
 - Achievable beam emittance
 - Final focus optics to IP: adiabatic plasma lens
 - Beam-beam interaction (beamstrahlung)
 - Emittance growth in main linacs (beam scattering in plasma)

Example S	Example set of LPA stage parameters for collider	
Plasma density (wall), n_0 [cm ⁻³] Laser wavelength, $\lambda[\mu m]$ Normalized laser strength, a_0 Plasma wavelength, λ_p [mm] Channel radius, $r_c[\mu m]$ Peak laser power, P_L [TW] Laser pulse duration (FWHM), τ_L [fs] Laser energy, U_L [J] Normalized accelerating field, E_L/E_0 Peak accelerating field, E_L/E_0 Peak accelerating field, E_L/E_0 Peak accelerating field, $E_L[GV/m]$ Laser depletion length, L_{pd} [m] Plasma channel length, L_{c} [m] Laser depletion, η_{pd} Bunch phase (relative to peak field), φ Loaded gradient, E_z [GV/m] Beam beam current, I [kA] Charge/bunch, $eN_b = Q$ [nC] Length (triangular shape), L_b [μ m] RMS beam length, σ_z [μ m] Efficiency (wake-to-beam), η_b e^-/e^+ energy gain per stage Beam energy gain per stage	$ \begin{array}{c} 10^{17}\\ 1\\ 1\\ 0.1\\ 22\\ 34\\ 130\\ 4.5\\ 0.2\\ 6\\ 5.7\\ 1.62\\ 29\%\\ \pi/3\\ 3\\ 3\\ 3.2\\ 0.19\\ 36\\ 14.5\\ 75\%\\ 5 \text{ GeV}\\ 0.95 \text{ J} \end{array} $	> LPA stage density and wavelength scalings: $E_z \propto n^{1/2}$ $L_{stage} \propto n^{-3/2} \lambda^{-2}$ $U_{stage} \propto n^{-1} \lambda^{-2}$ $\tau_{laser} \propto n^{-1/2}$ $U_{laser} \propto n^{-3/2} \lambda^{-2}$ $P_{laser} \propto n^{-3/2} \lambda^{-2}$ $P_{laser} \propto n^{-1/2}$ $N_b \propto n^{-1/2}$
Pour oueld Paur ber prafe	0.000	



Examples for 1 TeV and 3 TeV CM colliders

Energy, center-of-mass, $U_{\rm cm}[{\rm TeV}]$ 1 3 Beam energy, $\gamma mc^2 = U_b$ [TeV] 0.51.5Beam power, $P_b[MW]$ 4.323Luminosity, $\mathcal{L}[10^{34} \text{ s}^{-1} \text{cm}^{-2}]$ 10Laser repetition rate, $f_L[kHz]$ 4580 Horiz. beam size at IP, $\sigma_x^*[nm]$ 5018Vert. beam size at IP, $\sigma_y^*[nm]$ 0.51 Beamstrahlung parameter, Υ 11 1.4Beamstrahlung photons, n_{γ} 0.71.1Beamstrahlung energy spread, δ_{γ} 0.100.27Number of stages (1 linac), N_{stage} 100300Distance between stages [m] 0.50.5Linac length (1 beam), $L_{\text{total}}[\text{km}]$ 0.640.21Average laser power, $P_{\text{avg}}[\text{MW}]$ 0.200.36Efficiency (wall-to-beam)[%] 1116Wall power (linacs), $P_{\text{wall}}[\text{MW}]$ 28274

Assumed $\eta_{\text{laser}} = 0.4$ and $\eta_{\text{recovery}} = 0.9$

Density and wavelength scalings (fixed Luminosity and laser efficiency):

- Electrical-to-optical of diode-pumped lasers = 55%
- Optical-to-optical of fibers = 90%
- Combining/stacking fibers = 80%

- > Plasma-based accelerators accelerate ultra-short beams (~plasma skin depth)
- Plasma-based accelerators compatible with asymmetric (flat) beams

CLIC CONCEPTUAL DESIGN REPORT (2012)

		LPA
CMS energy [TeV]	3	3
Luminosity [x10 ³⁴ cm ⁻² s ⁻¹]	6	10
Particle/bunch [x109]	3.7	1.2
Bunch length, rms [um]	44	14.5
IP beam size ratio, σ_x / σ_y	45	36
$\sigma_x \sigma_y$ at IP, [nm ²]	45	18
Beamstrahlung parameter	4.9	12
Photons/lepton, n _y	2.1	1.1
Energy loss [%], δ _γ	0.29	0.27
Coherent pairs/BX [x108]	6.8	0.8 🖌

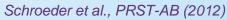
- Better IP background can be achieved with plasma accelerators owing to the short bunches
- Re-design damping/cooling system to be compatible with short beams

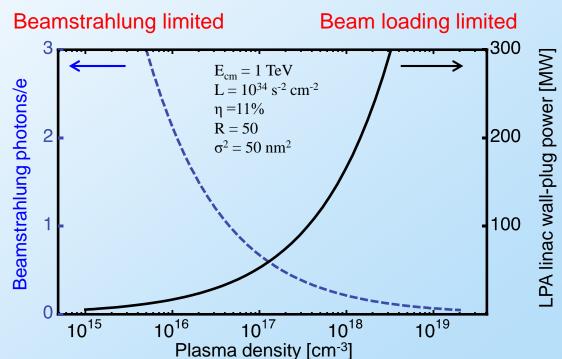
Power requirements reduced at lower density (Beamstrahlung limits charge/bunch)

Charge/bunch:

Laser rep. rate (for fixed luminosity): $N \propto \frac{U_L}{\Delta \gamma} \propto n^{-1/2}$

$$\propto n$$

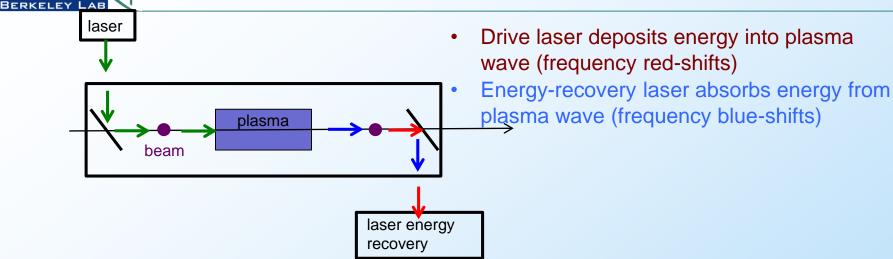

 $P \propto \sqrt{n}$


Schroeder et al., PRST-AB (2010)

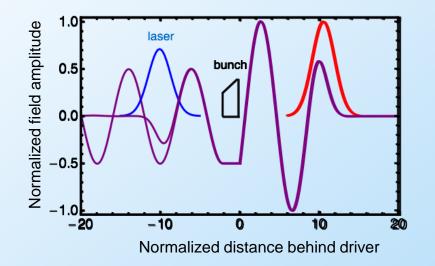
Wall-plug power:

$$n_{\gamma} \propto N^{2/3} \sigma_z^{1/3} \propto n^{-1/2}$$

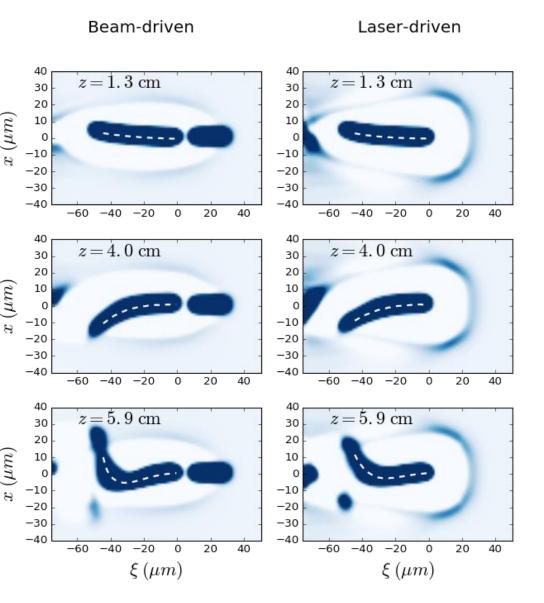
Charge/bunch limited by beamstrahlung:



Power scalings:


$$rac{\mathcal{L}}{U_{
m cm}^2} \propto rac{n_{\gamma}^{3/2} \eta P_{
m wall}}{\sigma_* \gamma^{5/2} \sigma_z^{1/2}}$$

Improved efficiency using laser energy recovery


Re-use laser in another LPA stage

Send to photovoltaic (targeted to laser wavelength) – energy recovery

 Additional energy-recovery laser pulse allows for no energy to remain in coherent plasma oscillations after energy transfer to beam – heat management

BBU/Hosing: Similar behavior for similar wakes independent of driver

Parameters:

- Plasma density: 2e17

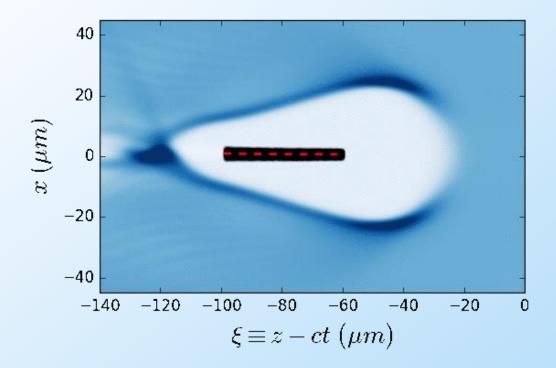
cm-3

- Beam density: 50e17 cm-

3

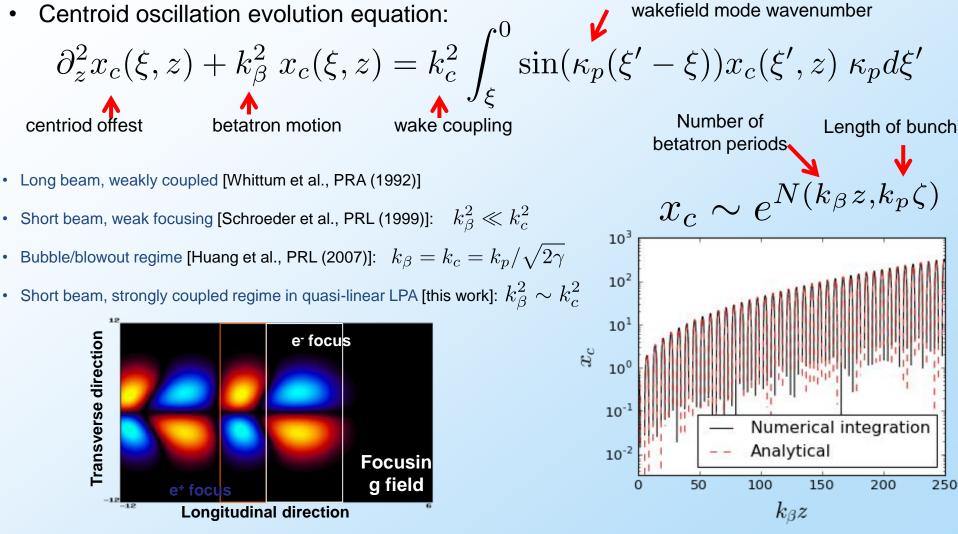
- (~ 800 pC)
- Laser a0: 3
- Laser waist: 16 microns
- Laser duration: 30 fs

Ponderomotive implementation of laser envelope in Warp:


$$ec{F}=-rac{mc^2}{2(1+ec{u}^2+\langleec{a}^2
angle)^{1/2}}ec{
abla}\langleec{a}^2
angle$$

- Driver (Beam/Laser) is not evolving

Beam hosing (BBU instability): Transverse bunch oscillation in wake


Growth of centroid oscillations owing to resonance with wakefield

simulation using WARP

Hosing limits plasma accelerator length

Transverse alignment tolerance: Beam break-up (BBU) instability (i.e., beam hosing)

Can be a in regime where (BBU growth length) < (accelerator stage length)</p>

Focusing required: (betatron length) < (BBU growth length)

centroid off-set growth: $x_c/x_0 \sim A^{-1/2} \exp(A)$

exponentiation:
$$A = C_g \left[(k_\beta z) (k_p \zeta)^2 \right]^{1/3}$$
 bunch length
Constant (determined mainly by geometry) Plasma accelerator length

• For a hollow plasma channel: [from theory of Schroeder et al., PRL (1999)]

$$C_g = \frac{3^{3/2}}{2^{5/3}} \left[2 \frac{I}{I_A} \frac{\kappa_1(k_w r_c)}{(k_w r_c)^2} \right]^{1/3} \simeq 0.4$$

In bubble/blow-out regime: [estimate from theory of Huang et al., PRL (2007); note, < Whittum theory for adiabatic ion channel]

$$C_g = 1.3 \left(c_r c_\psi \right)^{1/3} \sim 0.6$$

Possible BBU instability cures: Staggered tuning and betatron frequency spread

- In hollow plasma channel fundamental (accelerating) and dipole (BBU) modes have different frequencies: Dipole wakefield: $W_{\parallel} \sim \exp\left[\omega_0(k_p, r_c)(t - z/c)\right]$ Dipole wakefield: $W_{\perp} \sim \exp\left[\omega_1(k_p, r_c)(t - z/c)\right]$
 - Stagger tuning: dipole frequency is varied and fundamental is constant, stage-tostage
- Head-to-tail betatron frequency spread effective in suppressing BBU is single stage, \succ but requires large energy spreads: $\frac{\gamma}{\gamma} \approx \frac{I}{I_A} (k_w L_b) \left[\frac{2K_1(k_w r_c) \Omega_1(k_w r_c)}{(k_w r_c)^3 K_2(k_w r_c)} \right] \sim 0.1$ 30 centroid offset at tail c_c(z, L)/x_c(0, L) 20 N_s=20 10 Linear head-tail energy chirp: 0 $\gamma(\zeta) = \gamma_0 \left[1 - \delta(\zeta/L_b) \right]$ -10δ=0.1 -20 δ=0.15 -30 80 000 k_pZ 20000 60000 0 40000

6

0

 $^{-1}$

q 4 u 2

Head-to-tail betatron detuning leads to suppression of hosing instability

R. Lehe et al., PRL (2017)

• Head-to-tail spread in betatron frequency: $k_eta(\xi) = k_{eta,0} + \Delta k_eta \, \kappa_p \xi$

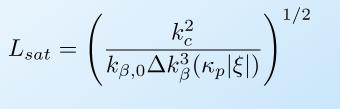
1

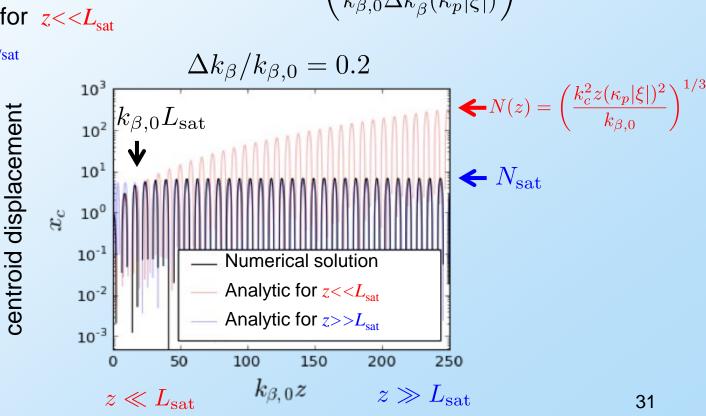
- Energy spread (BNS damping)
 - Requires 1-10% energy chirp
- Focusing force spread (e.g., from finite bunch length in quasi-linear wakefield)

$$k_{\beta}^{2} = \frac{k_{p}^{2}}{2\gamma} \left[A_{L} \sin(k_{p}\xi) + \frac{n_{b}}{n_{0}} \int_{\xi}^{0} \sin(k_{p}(\xi' - \xi)) k_{p} d\xi' \right]$$
laser driver
beam loading

 $k_{\rho}\xi$

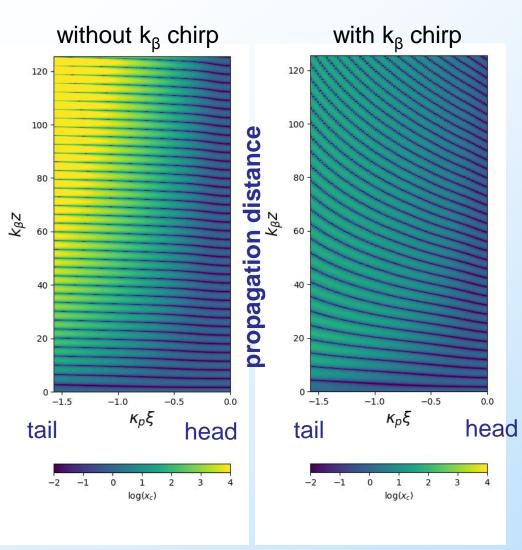
0


- Quasi-linear wakefield regime:
- Proper beam-loaded wake can have constant acceleration and linear focusing chirp (Panofsky-Wenzel)



Wakefield spread in focusing force leads to saturation of hosing instability

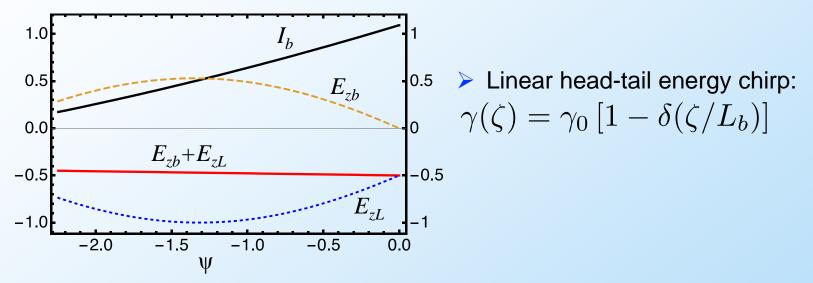
<u>New result</u>: (quasi-linear wakefields) Saturation of instability in strongly-coupled, short beam regime


- Analysis predicts saturation after distance:
- Exponential growth for $z << L_{sat}$
- Saturation for $z >> L_{sat}$

Wakefield spread in focusing force leads to saturation of hosing instability

• Heuristically, *N*_{sat} is growth after detuning distance:

 $\Delta k_{\beta} z k_p |\xi| \sim 1$

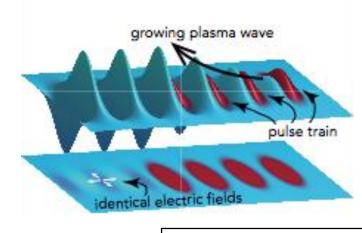

- Saturation length decreases with chirp and head-to-tail distance
- Saturation amplitude decreases with chirp and increases with head-to-tail distance

R. Lehe et al., (in prep.)

BBU cures: energy chirp requires final focus using adiabatic plasma lens

> Shape bunch for $\delta \sim 0.1$ chirp throughout accelerator:

- Re-design beam-delivery system (BDS) Adiabatic (plasma) focusing:
 - mismatched beta-function (amplitude of lower-energy particles never exceeds highest):

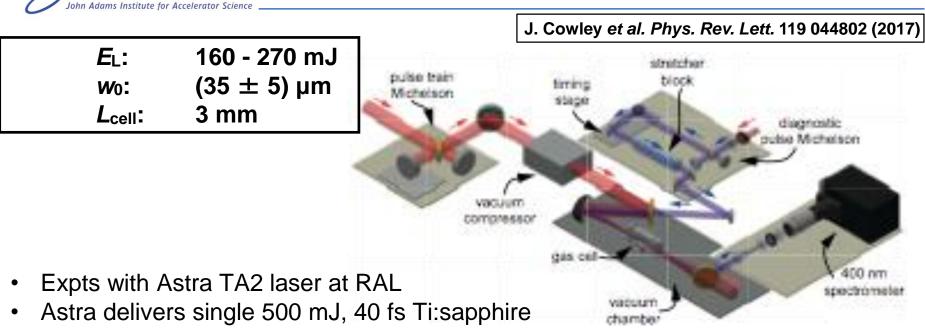

$$\tilde{\beta}(s) = \beta(s) \left[1 - \delta \sin^2 \left(\psi(s) / \sqrt{1 - \delta} \right) \right] \le \beta(s)$$

Chen, Oide, Sessler, Yu, PRL (1990)

 In principle, allows focusing system to overcome Oide limit (due to synchrotron rad.)

Multi-pulse laser wakefield acceleration

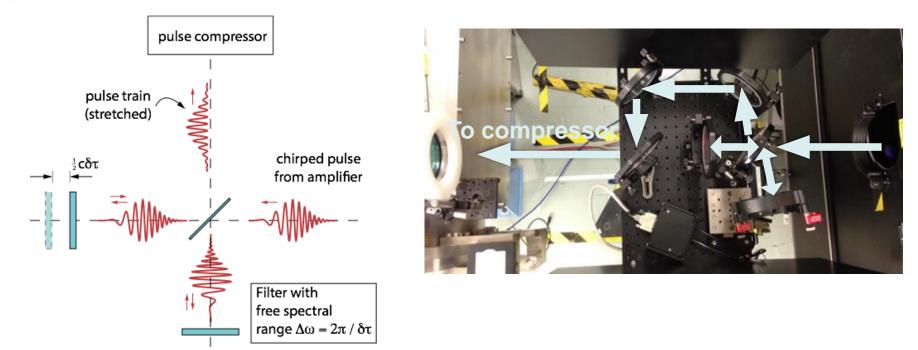
- Drive wakefield with train of low-energy laser pulses
- Resonant excitation allows driving laser energy to be delivered over many plasma periods
- Enables use of different laser technologies capable of high-rep-rate operation and with high wall-plug efficiency
- Fibre lasers: 5.7 mJ, 200 fs @ 40 kHz [Klenke *et al.* Opt. Lett. **39** 6875 (2014)]
- Thin-disk Nd:YAG: 0.2 1 J, 1 ps at 5 kHz commercially available
- Potential for additional control over wake excitation
- Natural architecture for "energy recovery"
- Not a new idea
- Many theory papers published in 1990s



S.M. Hooker et al. J. Phys. B 47 234003 (2013)

Multi-pulse LWFA Only 4 laser pulses shown. In reality would use 10 - 100!

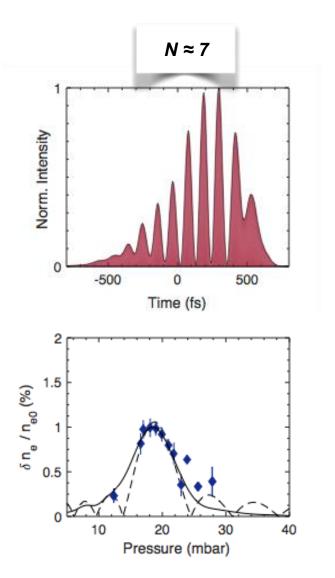
Proof-of-principle demonstration

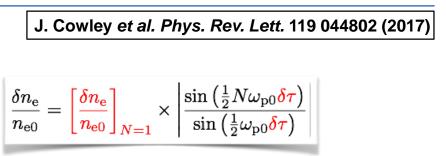

pulses

- Converted single pulses into train of N = 1 7 pulses
- Wakefield measured by frequency-domain holography & TESS

Pulse train generation

- Michelson interferometer inserted prior to compressor
- If total path delay is $c\delta \tau$ then free spectral range of Michelson is $\Delta \omega = 2\pi / \delta \tau$
- Partial compression


dams Institute for Accelerator Science


- modulated chirped pulse (pulse train)
- Full compression:
- pair of pulses of separation δτ
- Alternatively, can think of this as chirped beat-wave

Multi-pulse driver

- Excellent fit to analytic expression for N = 7
 - δτ = (116 ± 2) fs,
 - SSA: δτ = (112 ± 6) fs
- Excellent agreement with fit of wake calculated from measured pulse train with $\zeta \rightarrow \alpha \zeta$
- Find α = 1.04 ± 0.02

Wakefield maximized using optimized pulse trains

- As wake amplitude grows nonlinear plasma wavelength increases
- To maintain resonance, optimize pulse train parameters
- Pulse separation increases
- Pulse duration decreases

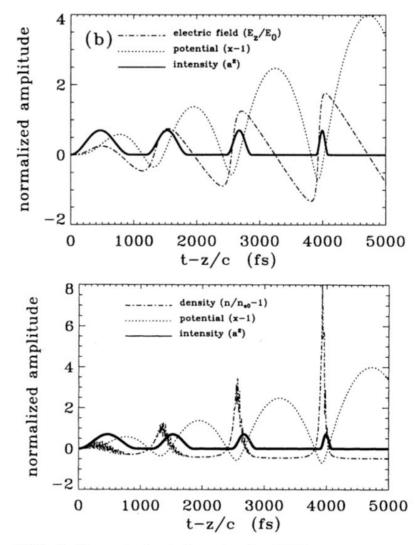
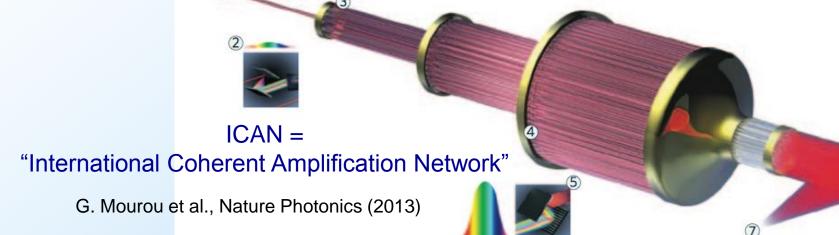
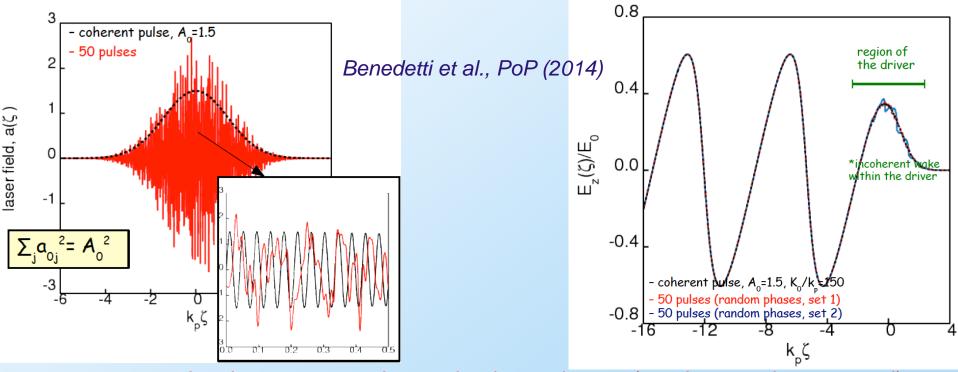



FIG. 6. Numerical solutions for the RLPA with sine-shaped pulses at $n_e = 10^{16}$ cm⁻³ and $a_0 = 1.2$, showing plasma-wave density instead of electric field.

Coherent laser combining: new laser technology provides a path for high average power

- Coherent combination of diode-pumped fiber lasers: path to high-peak power, highaverage power, high-efficiency lasers:
 - Fiber lasers: sub-ps pulses, ~mJ energy, ~10 kHz, ~10% wall-plug efficiency
 - Coherent combination of fiber lasers is proposed to achieve high peak power (energy)
 - Challenge: Requires combining (control of all laser phases, group velocity delays, dispersion) ~10⁴ fiber lasers

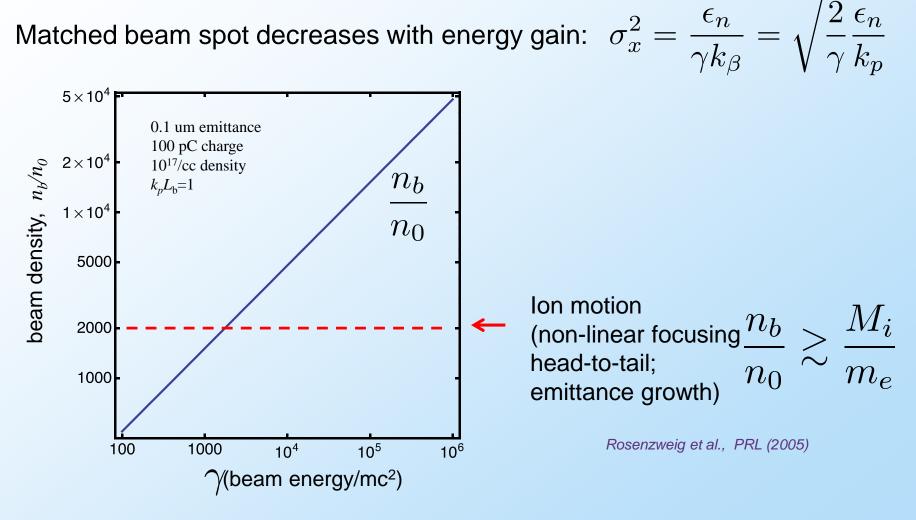
Figure 1 | Principle of a coherent amplifier network. An initial pulse from a seed laser (1) is stretched (2), and split into many fibre channels (3). Each channel is amplified in several stages, with the final stages producing pulses of ~1 mJ at a high repetition rate (4). All the channels are combined coherently, compressed (5) and focused (6) to produce a pulse with an energy of >10 J at a repetition rate of ~10 kHz (7).



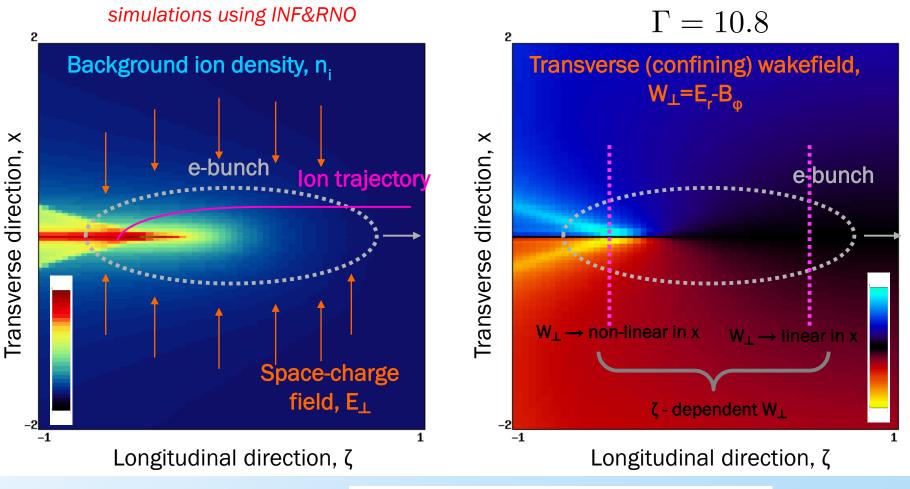
Wakefield excitation by incoherently combined lasers: path to high-average power

Wakefield driven by time-integrated gradient of electromagnetic energy density: depends on the average properties of the radiation in the volume ($\sim \lambda_p^3$)

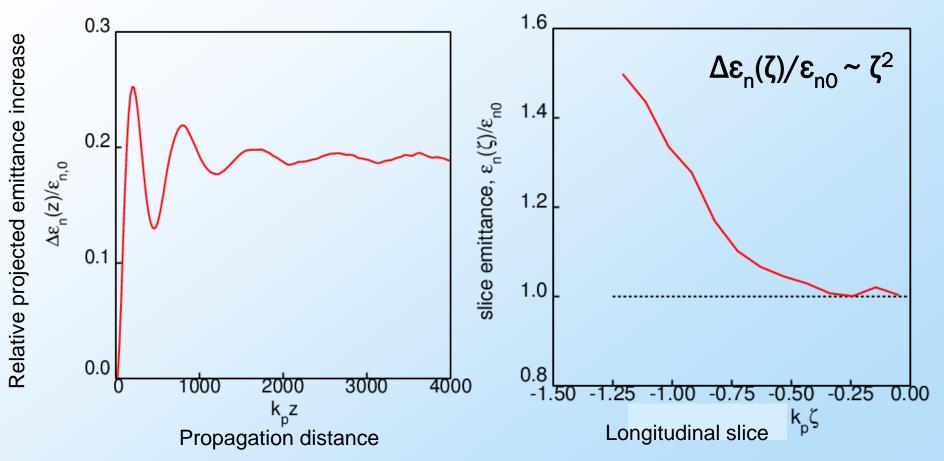
$$\left(\frac{\partial^2}{\partial t^2} + \omega_p^2\right) \frac{E}{E_0} = -\omega_p^2 \frac{1}{2} \nabla \left(\frac{eE_{\text{laser}}}{mc^2 \omega}\right)^2 \longrightarrow \frac{E}{E_0} = -c \int_0^t dt' \sin[\omega_p(t-t')] \frac{1}{2} \nabla \left(\frac{eE_{\text{laser}}}{mc^2 \omega}\right)^2$$


- Wakefield excitation does not require coherence, only energy density
- Incoherent combination (of many low energy) lasers for wakefield excitation:
 - Require only sufficient energy deposited in $\sim \lambda_p^3$ volume

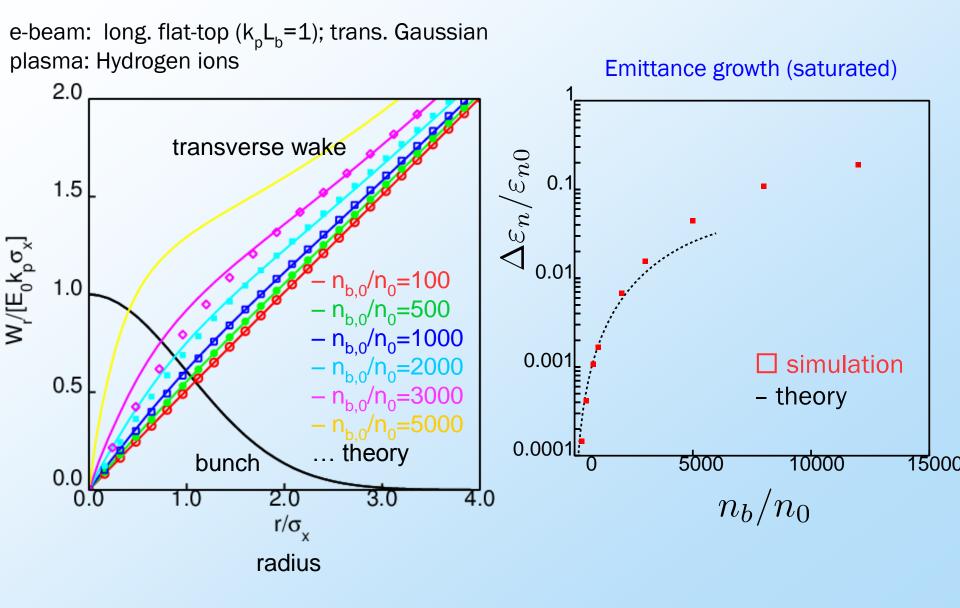
Incoherent summation easier than coherent (requires no phase control)



Beam self-focusing in plasma results in dense bunches

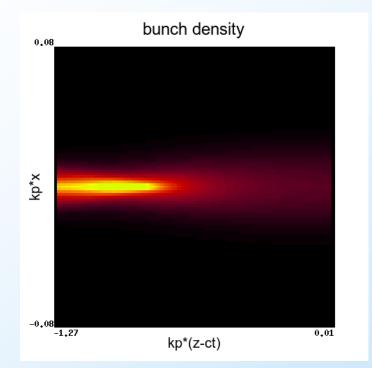

Space-charge field of dense beam: ion motion and nonlinear wakefield

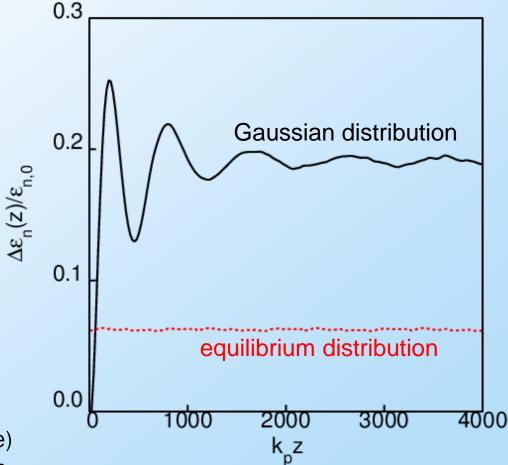
Condition for ion motion: $\Gamma = Z_i (m/M_i) (n_{b,0}/n_0) (k_p L_b)^2 \gtrsim 1$



e-beam: E=25 GeV, $\varepsilon_{n,0} = (\varepsilon_{n,x} \varepsilon_{n,y})^{1/2} = 0.6 \text{ um}$, $L_b = 20 \text{ um}$, $N_b = 10^{10} \text{ particles}$, $n_{b,0}/n_0 = 12000 \text{ plasma: Hydrogen ions}$, $n_0 = 10^{17} \text{ cm}^{-3}$

Analytical expression for the perturbed wakefield with ion motion derived





Equilibrium beam distribution --Bunch propagation without emittance growth

e-beam: E=25 GeV, $\varepsilon_{n,0} = (\varepsilon_{n,x}\varepsilon_{n,y})^{1/2} = 0.6$ um, $L_b = 20$ um, $N_b = 10^{10}$ particles, $n_{b,0}/n_0 = 12000$, uniform current

plasma: Hydrogen ions, n₀=10¹⁷ cm⁻³

- Requires exact preparation of initial 4D phase-space (non-Gaussian in space)
- Arbitrary longitudinal current distribution

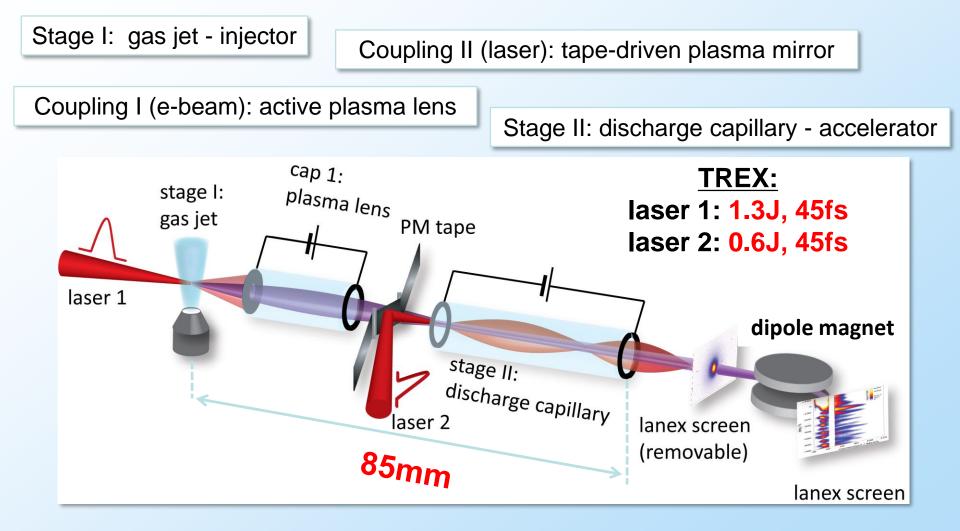
Approximate equilibrium distribution shows moderate emittance growth

e-beam: E=25 GeV, $\varepsilon_{n,0} = (\varepsilon_{n,x}\varepsilon_{n,y})^{1/2} = 0.6 \text{ um}$, $L_b = 20 \text{ um}$, $N_b = 10^{10} \text{ particles}$, $n_{b,0}/n_0 = 12000 \text{ plasma: Hydrogen ions, } n_0 = 10^{17} \text{ cm}^{-3}$ 0.3 Gaussian distribution 0.2 $\Delta\epsilon_n(z)/\epsilon_{n,0}$ Approximate equilibrium distribution = Gaussian having the same slice-by-slice approximate equilibrium 0.1 rms properties as exact distribution equilibrium distribution 0.0 2000 4000 3000 000 k_pz

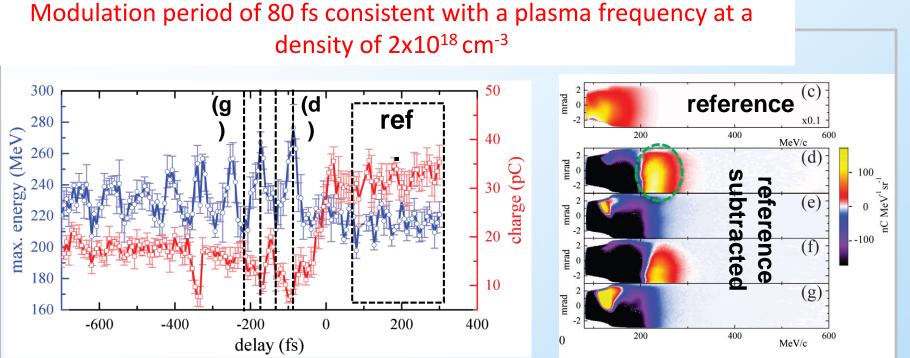
LPA-based collider challenges and potential solutions (requiring R&D)

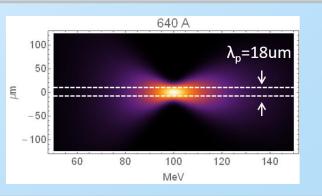
BERKELEY LAB

- Laser diffraction
 - Self-guiding in nonlinear regime
 - Guiding in pre-formed plasma channel
- Laser particle beam dephasing
 - Plasma tapering
- Laser energy depletion (with high accelerating gradient)
 - LPA staging
 - Compact driver in-coupling
- Positron focusing and acceleration (maintaining high beam quality)
 - Operate in linear regime
- High laser to beam efficiency (without energy spread growth)
 - Shaped particle beams
 - Laser energy recovery
- Heating of plasma
 - Use "energy recovery" pulse
- High average laser power
 - Laser beam combining

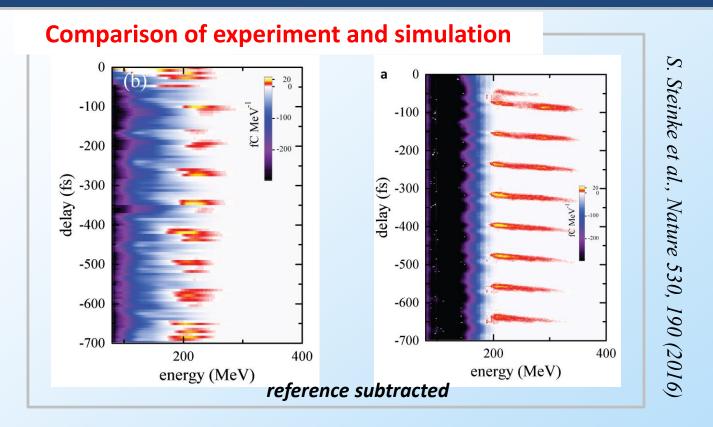

LPA-based collider challenges and potential solutions (requiring R&D)

- BERKELEY LAB
- Scattering in plasma
 - Strong plasma focusing
 - Use (near-) hollow channels
- Emittance growth via ion motion
 - Quasi-linear regime: Control particle beam density via focusing
- Beamstrahlung mitigation
 - Short bunches
 - Flat beams
- Synchronization
 - ~fs laser-driver timing required
- Beam break-up
 - De-tune dipole mode (stagger tuning)
 - Strong focusing
- Compatibility with other (non-linac) collider subsystems
 - Most, if not all, collider sub-systems would need to be re-designed
- Alignment tolerances

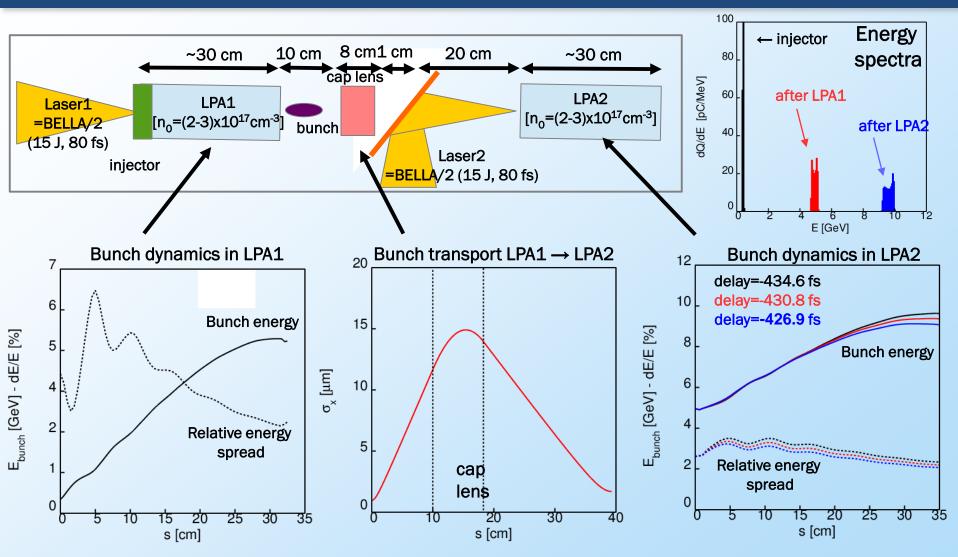

- ...


Multistage Coupling of two independent LPAs

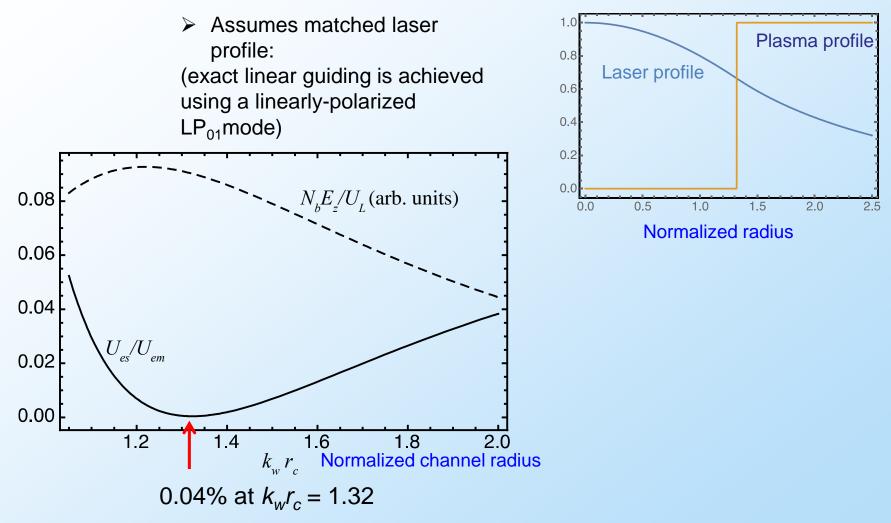
Staging Experiment: Energy gain of witness beam by timing of second laser (wake phase)


Previous plasma lens calculation suggest that 1.2pC of trapped charge corresponds to a wake trapping efficiency of 30%, but it's not that easy (unfortunately)

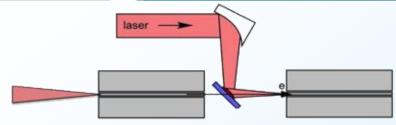
 $\dot{\boldsymbol{S}}$


50

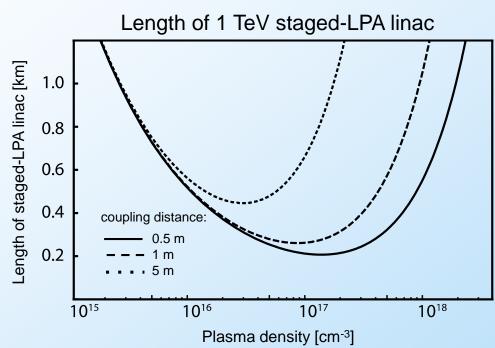
Simulation reproduce staging signatures at correct magnitude


- Recurring post acceleration (100 MeV) at the plasma frequency
- ~ 1 pC of charge at energies > 200 MeV
- Analysis of simulation results unravels details of the acceleration/ deceleration

~10 GeV electron beams from STAGING experiment using BELLA: simulations show high efficiency capturing and acceleration in LPA2 of the bunch produced by LPA1


Energy in electrostatic plasma mode is a small fraction of total wake energy

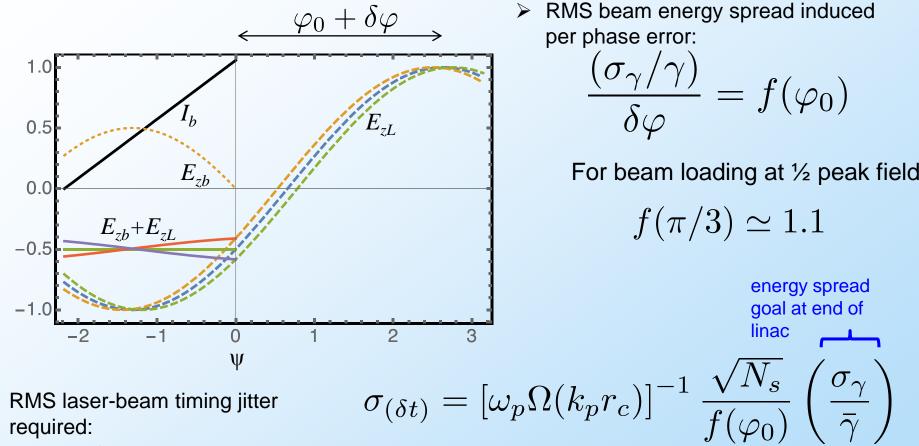
Fraction of energy in electrostatic mode can be <1%</p>



Staged LPAs: average gradient determined by driver in-coupling distance

Number of stages:

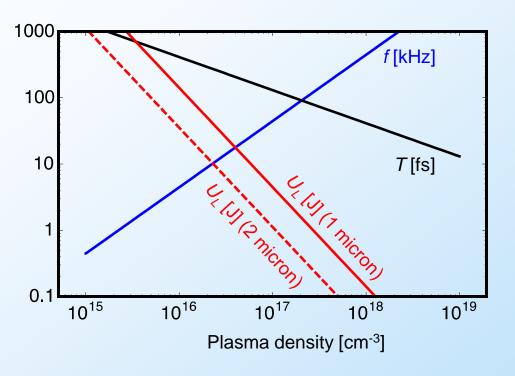
 $N_{
m stage} \propto n \lambda^2$



- Compact laser in-coupling distance (enables high average gradient)
 - Conventional optics: requires many Rayleigh ranges to reduce fluence on optic (avoid $2 a magge) \propto n^{-5/4} \lambda^{-1}$

 Plasma mirror: relies on critical density plasma production (high laser intensity): coupling <1 m

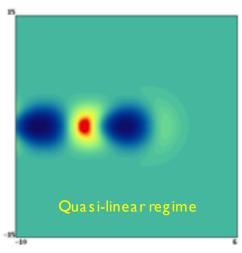
Timing jitter tolerances achievable with present technology

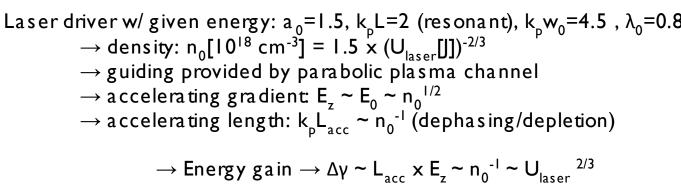

0.5% energy spread at end of linac (100 stages) requires <3.2 fs timing synchronization required

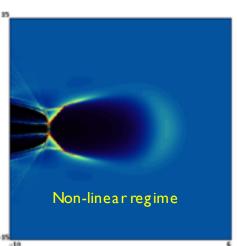
fs timing demonstrated in LPA staging experiments at LBNL

Collider requires high efficiency laser technology compatible with LPA density range

Different operational plasma densities require different laser parameters (laser technologies) with varying efficiency


- Laser duration (bandwidth) requirements: $au_L \propto n^{-1/2}$
- Laser average power requirements:


$$P_{
m avg} \propto n^{-1/2} \lambda^{-2}$$



Laser-plasma accelerators can operate in non-linear (bubble) or quasi-linear regimes

electron plasma density

Laser driver w/ given energy: $a_0=4.5$, $k_p L_{fwhm} = (4/3)\sqrt{a_0}$, $k_p w_0 = 2\sqrt{a_0}$, $\lambda_0 = 0.8$ (optimal pulse duration and spot chosen according to theory by Lu et al PRS TAB 2007, assuming etching length = dephasing length) \rightarrow density: $n_0[10^{18} \text{ cm}^{-3}] = 6.9 \times (U_{laser}[J])^{-2/3}$ \rightarrow self-guiding \rightarrow accelerating gradient: $E_z \sim \sqrt{a_0}E_0 \sim \sqrt{a_0}n_0^{-1/2}$ \rightarrow accelerating length: $k_p L_{acc} \sim \sqrt{a_0}n_0^{-1}$ (etching length=dephasin \rightarrow Energy gain $\rightarrow \Delta\gamma \sim L_{acc} \propto E_z \sim a_0n_0^{-1} \sim a_0U_{laser}^{-2/3}$

Future R&D to address challenges for laser-plasma-based linear collider

- LPAs have made tremendous progress over the last decade (demonstration of high gradient, multi-GeV acceleration, improved stability, etc.), but require significant R&D to realize LPLC:
- Beam quality preservation
 - Plasma target design
 - Plasma channels to mitigate scattering and control focusing (ion motion)
 - Particle beam injection
 - Shaped beam currents enables high efficiency without induced energy spread
- Coupling of laser and witness beams between stages
 - Compact transport of witness beam with emittance preservation
 - Compact delivery of drive laser beam (for high average gradient)
- Laser technology development
 - High average power lasers (beam combining)
 - High efficiency (fiber lasers)
- Development of other collider systems compatible with LPAs
 - Novel methods for generation and cooling electron and positron beams (replace damping rings)
 - Novel final focus concepts (plasma-based adiabatic focusing)
 - Development of novel alignment instrumentation and techniques required