ALEGRO 2018 workshop, 26 March - 29 March 2018, Oxford, UK

EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

Laser Drivers for the EuPRAXIA beamlines

Leonida A. GIZZI Istituto Nazionale di Ottica, CNR, Pisa Italy

On behalf of the EuPRAXIA Laser Design WP4

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

http://eupraxia-project.eu

Consiglio Nazionale delle Ricerche Area della Ricerca di Pisa

Laboratorio di Irraggiamento con Laser Intensi

Istituto Nazionale di Ottica – Consiglio Nazionale delle Ricerche

Contributors

CNR – Italy

Leonida A. GIZZI, Istituto Nazionale di Ottica-CNR, Pisa Petra KOESTER INO-CNR, (EuPRAXIA contract), Pisa Luca LABATE, INO-CNR, Pisa Fernando BRANDI, INO-CNR, Pisa Gian Carlo BUSSOLINO, INO-CNR, Pisa Barbara PATRIZI, INO-CNR, Firenze Guido TOCI, INO-CNR, Firenze Matteo VANNINI, INO-CNR, Firenze

CNRS – France

François MATHIEU, CNRS, Ecole Polytechnique Zeudi MAZZOTTA, CNRS, Ecole Polytechnique (Eupraxia contract) Dimitrios PAPADOPOULOS, CNRS, Ecole Polytechnique Catherine LE BLANC, CNRS, Ecole Polytechnique Bruno LE GARREC, CNRS, Ecole Polytechnique Audrey BELUZE, CNRS, Ecole Polytechnique Jean-Luc PAILLARD, CNRS, Ecole Polytechnique

Collaborators

Franck FALCOZ Amplitude Technologie Christophe SIMON BOISSON Sandrine RICAUD	es F	Rajeev PATTATHIL Klaus ERTEL Paul MASON Marco GALIMBERTI	STFC Rutherford Ap Laboratory	pleton
Sebastien LAUX Thales Group	Andy BAYRAMIAN Constantin HAEFNER		Oliver KARGER Alexander KNETSCH	Hamburg University
Paul CRUMP Ferdinand-Braun- Institut, Germany	Craig W. SIDERS Tom SPINKA K. CHESTNUT	Lawrence Livermore National	Maria Pia ANANIA Fabrizio BISESTO	
industries laboratories shaded major contributors/collaborators	T. GALVIN K. SHAFFERS E. SISTRUNK	Laboratory	Dario GIOVE M. BELLAVEGLIA S. GALLO	LNF

- Introduction to EuPRAXIA
- Strategy for a PW-kW laser for EuPRAXIA

CONTENT

- Main EuPRAXIA laser features
- Preliminary laser design
 - Main industrial components
- Needed key industrial developments
- Conclusions

EuPRAXIA LAYOUT

EuPRAXIA is a **conceptual design study** for a **5 GeV electron plasma accelerator** as a European research infrastructure. Goals:

- 1. Address quality. Show plasma accelerator technology is usable:
 - Incorporate established accelerator technology for optimal quality
 - Combine expertise from accelerator, laser labs, industry, international partners
 - Develop new technical solutions and a few use cases
- 2. Show **benefit in size and cost** versus established RF technology:
 - Proposed solutions must offer a significant benefit, e.g. fitting constrained spaces (small labs, hospitals) and/or must be less effective.
 - Cost benefits must include low operational costs (turn-key, industrial lasers at high repetition rate, cost-effective RF components, ...): small team, remote OP, ...

Note: EuPRAXIA will initially be low wall-plug power efficiency

• Efforts with **industry and laser institutes** to improve rep. rate & efficiency (incorporate all viable laser technologies with higher efficiency)

Application to FEL requires low (total) energy spread (<1%) and low emittance (<1mm mrad)

- 1. Improve technical components and approaches in plasma accelerator concepts producing already GeV class beams:
 - Improved laser technology
 - Feedbacks
 - New and old concepts for solutions in one stage all plasma facility
- 2. Start with a **high quality beam from a small RF injector** and boost it to high energy:
 - Starting point quality is assured (start with FEL quality beam)
 - Solve new issues, e.g. timing: new solutions needed
 - Fully stageable \rightarrow path to high energy

- 09.2014 Proposal submission
- 07.2015 Approval
- 11.2015 Start of EuPRAXIA project
- 11.2016 First common study version of EuPRAXIA design
- 11.2017 <u>Mid-term</u>
- 08.2019 Application to **ESFRI roadmap** for 2020 update
- 10.2019 Final **conceptual design report** and end design study
- 2020+ Construction decision
- > 2021 2025 Construction

> 2025 – 2035 Operation

Short time scale: EuPRAXIA Laser design based on technology with high TRL Guideline: exploring extension of existing concepts and prototypes

EuPRAXIA Development Paths

towards high quality electron beams

R. Aßmann (DESY) - EuPRAXIA YM 2017

Schemes under consideration (WP2)

	1B	NO	2B DESY 160 Mey LPAS DESY INFN CEA 5 GeV (1 GeV) DESY INFN	3B IST, LLR LPGP, INO	EA DMeV LPAS (1 Ge CEA	v v)
Final Energy				150 MeV	1Gev /	5 Gev
	CNR-INC DL) (P.Tomassini) IL (2nd Harm.)	DESY (E.Svystun & A.F. Pousa)	IST-ID L. Silva & J. Vieira) 0.45 J	CEA (X. Li &	P. Nghiem)
	0.9x8 J	0.01 J	101 J	28 fs	Quasi - linear	Bubble
	30 fs	38 fs	100 fs	8.4 μm	15J	
	45 µm	3.5 µm	54.4 μm	CNRS-LLR (A. Beck)	1080 fs	
	de	lay 40 fs	INFN (Andrea Rossi)	10.5 J	55 µm	
			6.4 J	28 fs		
			110 fs	40 µm		
\mathbf{O}			35 µm	CNRS-LPGP (G. Maynard)		
			170.11	0.47 J		
	energy (J)		150 Mev	20 fs		
	duration (fs)	FWHM	1GeV			
	waist (µm)		SGeV	CNR-INO (P. Iomassini)*		
	LNE			DL IL (30mega)		
	PET	500 MeV CEA	5 GeV	0.7X4-0.5X0 J 0.02 J		
		LNF	(1 GeV)	27 um 4 2 um		
	4B		pothing proposed for the 4B	delay 47 - 49 fs ⁻⁺ *N2-Ar		
			nothing proposed for the 4D			
	CNR-INC) (P.Tomassini)	DESY (E Swystup & A F. Pousa)		CEA (X Li &	P Nahiem)
\sim	DL	IL (3rd Harm.)				r . righten)
	2.2x8 J	0.02 J	45.6 J		Quasi - linear	Bubble
	50 fs	60 fs	70 fs		53J	75 J
	60 µm	3.5 µm	50 μm		130 ts	108 ts
	del	ay 102 fs	INFN (Andrea rossi)		55 µm	48 µm
			20.0 J 110 fs			
			70 µm			

Large BW (≈30 fs) required for injector/1GeV stage. May be relaxed (≈50 fs) for 5GeV stage. Not compatible with many available direct CPA schemes (Nd, Yb). MULTI-PULSE drivers attracting increasing attention.

EUPRAXIA KEY FEATURES OF EUPRAXIA LASER

- Short pulse PW-kW laser technology (CPA, diode pumping);
- High repetition rate to allow user operation while enabling active stabilization via feedback loops;
 - Minimum 20 Hz, but exploring 100 Hz option
- Average power ranging from 1kW to 10 kW;
- Extraordinary performances of beam transport, focusing, diagnostics with the reliability of an industrial system.
- Pump lasers, TiSa crystal management and compressor gratings at 100 Hz need funding and demonstrators prior to final TDR – collaboration ready to start.

EuPRAXIA

A PW-class system, with **demanding high average power** (>1 **kW**, ideally 10 kW)

The EuPRAXIA **PW-kW** laser is, by all means, a unique system. Programmes worldwide (e.g. kBELLA, LBNL, US) are exploring similar concepts. EU can build on current leadership in PW laser technology to keep the pace.

- **EuPRAXIA requires up to tens of kW** average laser power with PW peak power and up to 100 Hz repetition rate;
- **Consensus** reached in the EuPRAXIA laser community is that Ti:Sa technology pumped by diode-pumped solid state (DPSSL) lasers provides a relatively safe ground, with major European industrial endeavour in place;
- Recent developments match our requirements, with DPSSL prototypes pump lasers offering kW performances with potential scalability to 10s of kW at the required wavelength of 0.5 μm;
- At the same time, **other technologies are developing** aiming at higher rep. rates, higher average power levels and even more efficient configurations.

- Fiber laser technology offers the best WPE >50% in CW mode and coherent combination is being developed (FSU Jena-Fraunhofer IOF and Ecole Polytechnique-Thales in France). Suited if EuPRAXIA evolves towards lower energy per pulse >10 kHz;
- **Direct Chirped Pulse Amplification** with lasing media pumped directly by diodes is ideal for higher efficiency and higher rep-rate (see also M4.2 milestone report of April 2017)
- **Direct CPA concepts explored** in benchmarking phase and bottlenecks emerged concerning the minimum achievable pulse duration and scaling;
- More recently, motivated by kBELLA project (LBNL, US) and also by EuPRAXIA, new concepts are emerging in this scenario (LLNL), now entering design and prototyping for intermediate average power levels;
- **Consideration is given** to such schemes in view of significant ongoing developments for possible complementary combinations.

EuPRAXIA LASER (Ti:Sa)

LASER 1 - Injector 150 MeV		LASER 2 - Injector 1 GeV					
Parameter	Label	PO	P1	Parameter	Label	PO	P1
Wavelength (nm)	λ _{1 (nm)}	800	800	Wavelength (nm)	$\lambda_{2 (nm)}$	800	800
Maximum energy on target (J)	Etarget	5	7	Maximum energy on target (J)	E _{target}	15	30
Maximum output energy (J)	Eout	8.8	12.5	Maximum output energy (J)	Eout	18.8	37.5
Energy tuning resolution (% of targeted value)	dE	7	5	Energy tuning resolution (% of targeted value)	dE	7	5
Total output energy (incl. Diagnostic beams)	Etot	7	10	Shortest nulse length (FW/HM) (fs)	Та	30	20
Pulse length (FWHM) (fs)	τ ₁	30	20		t2	50	20
Repetition rate (Hz)	f ₁	20	100	Repetition rate (Hz)	f ₂	20	100
Requirement on energy stability (RMS) %	σ _{<e></e>}	1	0.6	Requirement on energy stability (RMS) %	σ _{<e></e>}	1	0.6

LASER 3 - Driver 5 GeV			
Parameter	Label	PO	P1
Wavelength (nm)	$\lambda_{2 (nm)}$	800	800
Maximum energy on target (J) *	Etarget	50	100
Maximum output energy (J)	Eaut	62.5	125
Energy tuning resolution (% of targeted value)	dE	7	5
Shortest pulse length (FWHM) (fs)	τ2	60	50
Repetition rate (Hz)	f ₂	20	100
Requirement on energy stability (RMS) %	σ< _{E>}	1	0.6

FRONT-END

Each laser beamline required independent spectral amplitude/phase control that is carried out in the front-end: EuPRAXIA required three independent front-end sections seeded by the same laser oscillator independently as per the requirements of the seeding of each of the three amplification chains

•Overall synchronization: single master oscillator, broadband

- Independent adjustment of spectral amplitude for each amplification chain: separate front –ends, with the same architecture
- Pulse energy 1.0-1.5 J
- Stretched pulse duration $\sim 500 \mbox{ ps}$
- Main requirement: high pre-pulse contrast

Each of these front-end will deliver stretched pulses with ~1J energy to the subsequent amplification stages

EUPRAXIA Main Front-end components

State of the art components to ensure pulse energy for the main amplifiers with large bandwidth (short pulse duration), control of spectral phase, high contrast ...

>1J, 100Hz

>55nm FWHM, stretched to a several 100ps

Starting from existing industrial systems at 100 Hz

Amplifiers strategy

Design guidelines

- Modularity: possibility to use the same amplification stages in the different laser chains

- Scalability: possibility to upgrade from P0 to P1 performance level, "simply" by increasing pump energy and rep rate (conservative design at P0)
- High extraction efficiency (esp. at P1) to reduce pump energy requirements
- Thermal management issues

Methodology

- Evaluation of the amplification parameters (energy, spectrum, beam size, stability, parasitic lasing) with numerical simulations (MIRO CEA);
- -Validation of modelling with existing systems up to multi-J level;
- Preliminary thermomechanical evaluation by means of FEA simulations (LAS-CAD);

Results

- Main parameters for each stage: pump energy, extracted energy, beam size, spectral shift, parasitic gain
- Energy stability vs pump and seed energy fluctuations
- Evaluation of thermal aberrations
- Cooling strategies: liquid flow cooling
- ASE/PL mitigation strategies: Extraction during pumping

Report on preliminary Laser design

See also: **A viable laser driver for a user plasma accelerator** L.A.Gizzi, P. Koester, L. Labate, F. Mathieu, Z. Mazzotta, G. Toci, M. Vannini NIM (EAAC2017 proc.),2018, in press https://arxiv.org/abs/1802.05546

Beams and amplifier stages

Amplifiers' performances modelled to size components and confirm basic estimates

E^[^]PRA IA

Power amplifiers require high average power pump lasers

	Target E (J)	Out E (J)	PRF (Hz)	Seed E (J)	Design Out E (J)	0.5μm Pulse E (J)	Extr. Eff. (%)	<p> (532 nm) (kW)</p>	Therm al Load (kW)	IR Pulse E (J)	<p> (1µm) (kW)</p>
LASER1 (AMP1) P0	7,0	8,8	20	1,5	8,9	19,2	39	0,4	0,2	27,4	0,5
LASER1 (AMP1) P1	10,0	12,5	100	1,5	12,7	25,7	44	2,6	1,3	36,7	3,7
LASER2 (AMP2) P0	15,0	18,8	20	6,3	19,1	37,2	35	0,7	0,4	53,1	1,1
LASER2 (AMP2) P1	30,0	37,5	100	8,8	37,5	65,2	44	6,5	3,3	93,1	9,3
LASER3 (AMP3) P0	50,0	62,5	20	18,8	62,4	105,0	42	2,1	1,1	150,0	3,0
LASER3 (AMP3) P1	100,0	125,0	100	37,5	126,0	197,0	45	19,7	9,9	281,4	28,1

Total fundamental wavelength average power estimates ranges from 5 kW (20 Kz) to 40 kW (100 Hz)

EUPRAXIA INDUSTRIAL SUBSYSTEMS: PUMP LASERS

**** **** Horizon 2020

Industrial unit (P60): conversion to diode pumping fully designed

Flashlamp pumped Nd:YAG/ DPSSL possible 80 J output energy demonstrated @ 10 Hz, 1064 nm 60 J SHG energy @ 532 nm : design target (40 J demonstrated)

- Cost of diode still an issue – currently 5x total (including operational) costs compared to flashlamps.
- Expected to decrease in 5-10 yrs.
- Maintenance free operation for 25-30 yrs.

DiPOLE 100

120 mm square

8.5 mm thick

Konoshima Chemical Co.,Ltd.

10J Input

∆T ~4K

CFD: 150K 140 g/s

- 6 x Yb:YAG slabs
- 4-pass relay-imaging design
- NF, FF diagnostics on each pass

SCENARIO FOR BASELINE (MANDATORY)

Parameter	L1	L2	L3
Pulse rate (Hz)	20 (100)	20 (100)	20 ()00)
Wavelength	515	515	515
Energy (J)	19 (26)	37 (65)	105 200
Power (kW)	0.4 (2.6)	0.7 (6.5)	2.1 (20)
Conversion	70%	70%	70%
Wavelength	1030	1030	1030
Energy (J)	27 (37)	53 (93)	150 280)
$Powor(k)\Lambda()$			
	0.5 (3.7)	1.1 (9.3)	3.0 (28)
Extraction	0.5 (3.7) 25%	1.1 (9.3) 25%	3.0 (28) 25%
Extraction Diode	0.5 (3.7) 25% <mark>940</mark>	1.1 (9.3) 25% 940	3.0 (28) 25% 940

Building blocks exist (or available in near future) for Baseline performance

P. Mason, M. Divoký, K. Ertel, J. Pilar, T. Butcher, M. Hanuš, S. Banerjee, J. Phillips, J. Smith, M. D. Vido, A. Lucianetti, C. Hernandez-Gomez, C. Edwards, T. Mocek, J. Collier, Kilowatt average power 100j-level diode pumped solid state laser, Optica 4 (4) (2017) 438–439

Science & Technology Facilities Council

Central Laser Facility

- L3 Baseline: 105 J @ 515 nm, 20 Hz
 - Interleave 4 x DiPOLE100 @ 10 Hz
- 140 J @ **515 nm**, 20 Hz

Science & Technology Facilities Council

Central Laser Facility

- L3 Baseline: 105 J @ **515 nm**, 20 Hz
 - DiPOLE150 @ 10 Hz (4.1 kW thermal load)
 - 2 x DiPOLE75 @ 20 Hz
- 105 J @ **515 nm**, 20 Hz

MODERATE R&D INVESTMENTS

Simple

& more

affordable

Compact

Science & Technology Facilities Council

Central Laser Facility

- L3 Baseline: 105 J @ 515 nm, 20 Hz
 - Operate @ higher fluence \Rightarrow reduce aperture
 - Higher gain \Rightarrow fewer amplifier stages
 - Relax beam quality \Rightarrow higher thermal load (P_{avg}, PRF)

105 J

- 2 x compact-DiPOLE100 @ 20 Hz (5.5 kW load)

or 1 x DiPOLE150 @ 20 Hz (8 kW load)

SHG

DiP^DLE150

20 Hz

100 Hz pump laser

FBH brilliant high duty cycle pump: small-series prototype

Transmission vs. "active mirror" configuration is currently being evaluated to account for thermal management

Transmission geometry

"Active mirror" geometry

Pro: Well established concept with no propagation through cooling fluid **Con**: limited cooling (single face), to be modelled

Pro: More efficient (double-side) cooling and reduced complexity;

Con: propagation through flowing cooling liquid

*) Water cooled Ti:Sa amplifier ("Active Mirror" configuration) under development at ELI-HU (After V. Cvhykov *et al.*, Opt. Lett, **41**, 3017, 2016) **) Fluid (D₂O) cooled Nd:YAG laser, 20 kW CW pump power, D₂O (After X. Fu*et al.*, Opt. Express, **22**, 18421 (2014)

***) Fluid (Siloxane) cooled Nd:YLF laser, 5 kW CW pump power (After Z. Ye et al., Opt. Express, 24, 1758 (2016)

Transmission vs. "active mirror" configuration is currently being evaluated to account for thermal management

Both cooling schemes are capable of reducing the transverse temperature gradients to manageable values.

DIRECT CPA

Direct CPA (required for >100Hz) - energy efficient.

C. Siders et al., EAAC 2017

DIRECT CPA with Tm:YLF

Tm:YLF: Big-Aperture-Thulium Laser (BAT*)

E^[•]**PRA**

- Central wavelength at 1.9 μm,
- Pulse duration potentially as short as 50 fs
- WPE very high for >10 kHz (<5% at 100 Hz)

Main challenges: large optics, mechanical stability, cooling of gratings, beam quality control ...

Open issues

EuPRAXIA laser relies on industrial development in:

- Pumping technology: diode (direct or indirect) pumping;
- Gain media: material should be industrially available at laser quality, scalable in size and capable of supporting large bandwidth and efficient cooling;
- Grating technology to improve for higher damage threshold and smaller beam size
- Optics Damage threshold
- Thermal load, management, dissipation
- Vacuum technology

E^úPRA

• Mechanical stabilization (active and passive);

Major R&D and technology transfer to embed in final systems

LABs AND INDUSTRY

A wide collaboration is ready to be involved to tackle open issues

SUMMARY

- •EuPRAXIA aiming at high quality plasma acceleration;
- •PW-kW laser system driver, beyond current state-of-the-art ;
- •Design phase ongoing: preliminary Ti:Sa design with existing pump-lasers (P60 with DPSSL, DiPOLE ...);
- •Also considering evolution towards higher repetition rate with more efficient (direct CPA) and more scalable architectures (e.g. Tm:YLF).
- •Significant development/demonstrators needed to solve standing issues in pumps, thermal management of Ti:Sa, compressor gratings, beam pointing.

Consortium

16 Participants

