

Laser-driven sources of ultra-relativistic positron beams

Gianluca Sarri

School of Mathematics and Physics, Queen's University Belfast, UK g.sarri@qub.ac.uk

ALEGRO workshop

Oxford, 27/03/2018

Gianluca Sarri

Slide 1/21

Introduction

Laser-driven sources of ultra-relativistic positron beams

A simple scheme

EPSRC

✓ PROS • Small source size (~ microns)

- Short duration (even a few fs)
- Relatively low divergence (~ mrad)
- Compact generation of ~ GeV-scale energies
- We don't need narrowband beams!

Would these properties map onto the positrons?

GeV-scale, kAmpere positron beams with micron-scale emittance?

Slide 3/21

Gianluca Sarri

DUEEN'S

BULLFAST STATE ASER wakefield acceleratio EPSRC

Shot	E_{L}	Beam charge			Beam energy m I		
	5	$P \sim$			$\frac{100}{2 \text{ CoV}} > 1 \text{ CoV} > 0.25 \text{ CoV}$		
		> 2 Ge v	> 1 Ge v	> 0.25 Gev	> 2 Ge V	> 1 Ge v	> 0.25 Gev
1	11.29	4.4	31.0	77.5	9.9	47.5	73.6
2	11.31	2.0	31.5	122.2	4.5	42.8	93.4
3	11.42	14.9	98.9	343.4	34.8	154.2	286.3
4	11.31	6.4	35.7	92.1	14.6	53.6	85.7
5	11.31	15.2	127.8	373.9	33.0	182.1	335.1

K. Poder et al., in preparation (2018)

• Divergence: ~ mrad

• Source size: ~ micron

Slide 4/21

Current (>1GeV): 0.1 MA

Normalised emittance (1GeV): ~mm mrad

- E = 200 J
- d = 45 cm
- P = 10 PW
- F/80 focusing

Generation of 10+ GeV electron beams within one acceleration stage

Gianluca Sarri

ELI-NP

Bucharest - Romania

A plasma-based collider? EPSRC

Gianluca Sarri

Slide 6/21

Wake-field based positron generator

Laser-driven generation of ultra-relativistic positron beams

General setup

Laser-wakefield electrons to trigger the cascade in

G. Sarri et al., Phys. Rev. Lett. 110, 255002 (2013).

General setup

Laser-wakefield electrons to trigger the cascade in

- ✓ Divergence: 1-5 mrad (from solid: ~ 20 degrees)
- ✓ Duration: ~ 10 fs (from solid: 1 10 ps)
- ✓ Energy: 100s of MeV (from solid: 10s of MeV)
- ✓ Laser energy: ~1-10J (from solid: ~kJ)
- ✓ Possibility of generating neutral e⁻/e⁺ beams in sit

G. Sarri et al., Phys. Rev. Lett. 110, 255002 (2013).

General setup

1 cm **Iron Magnet Yoke** 7 mm Plastic **1** cm Plastic Plastic ⊗ B = 0.8 T ⊗ 3.3 cm ↔ High-Z y-rays e⁻ Laser 3 cm Target Gasjet 5 mm 8 Plastic Plastic Plastic 10 cm **Iron Magnet Yoke**

Laser-wakefield electrons to trigger the cascade in

- ✓ Divergence: 1-5 mrad (from solid: ~ 20 degrees)
- ✓ Duration: ~ 10 fs (from solid: 1 10 ps)
- ✓ Energy: 100s of MeV (from solid: 10s of MeV)
- ✓ Laser energy: ~1-10J (from solid: ~kJ)
- ✓ Possibility of generating neutral e⁻/e⁺ beams in sit

G. Sarri et al., Phys. Rev. Lett. 110, 255002 (2013).

Gianluca

Sarri

General setup

Accelerating electron beam 400 Jong 300 Jong Jong Jong Jong

Laser-wakefield electrons to trigger the cascade in

- ✓ Divergence: 1-5 mrad (from solid: ~ 20 degrees)
- ✓ Duration: ~ 10 fs (from solid: 1 10 ps)
- ✓ Energy: 100s of MeV (from solid: 10s of MeV)
- ✓ Laser energy: ~1-10J (from solid: ~kJ)
- ✓ Possibility of generating neutral e⁻/e⁺ beams in sit

G. Sarri et al., Phys. Rev. Lett. 110, 255002 (2013).

Slide 7/21

ELFAST First results: low energy EPSRC

G. Sarri et al., Phys. Rev. Lett. 110, 255002 (2013).

Gianluca Sarri

Slide 8/21

Higher electron energie: EPSRC

G. Sarri et al., Nature Comm. 6, 6747 (2015).

Gianluca Sarri Slide 9/21

Positron spectra EPSRC

Gianluca Sarri

Slide 10/21

Gianluca Sarri

Slide 11/21

Scaling with electron energy

Laser-driven generation of ultra-relativistic positron beams

Initial conditions

Three cases:

Commercial laser (~100 TW)

- 1 GeV electron energy
- 5% bandwidth
- 100 pC
- 5 fs duration
- 5 mrad divergence
- 2 micron source size
- 1 Hz repetition rate

- 5 GeV electron energy
- 5% bandwidth
- 100 pC
- 5 fs duration
- 0.4 mrad divergence
- 0.4 micron source size
- 1 kHz repetition rate

ELI-NP (10 PW)

- 20 GeV electron energy
- 5% bandwidth
- 100 pC
- 1 fs duration
- 0.4 mrad divergence
- 0.4 micron source size
- 1 kHz (1 Hz, really..)

Positron spectra

For 20 GeV electrons, up to 2x10⁷ positrons at 1 GeV

For 5 GeV electrons, up to 6x10⁶ positrons at 1 GeV

A. Alejo and G. Sarri, in preparation (2018)

Slide 12/21

Beam duration and curren EPSRC

Sarri

Source size

Gianluca Sarri Slide 14/21

Divergence

Emittance and Luminosity

Laser-driven generation of ultra-relativistic positron beams

Emittance

Normalised Emittance EPSRC

Sarri

Sarri

Low energy positrons

Laser-driven generation of ultra-relativistic positron beams

Slide 19/21

Low-energy positrons (~ 100 keV) are useful for material testing via Positron Annihilation Spectroscopy (PAS)

Laser-driven PAS High-flux and short (~ ps) source of

Conclusions

Laser-driven generation of ultra-relativistic positron beams

QUEEN'S UNIVERSITY BELFAST

Conclusions

EPSRC

Slide 21/21

 Laser-wakefield acceleration of electrons provides a good seed for the generation of high-quality and high-current positron beams

Thanks for your attention!

Gianluca Sarri g.sarri@qub.ac.uk

Laser-driven sources of ultra-relativistic positron beams