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• Before the Higgs discovery, massive Yang-Mills theory violated perturbative unitarity 
— problem with high-energy growth of 2 -> 2 processes 

• Discovery of the (elementary) Higgs made the SM theory self-consistent 

• The Higgs brings in the Hierarchy problem: radiative corrections push the Higgs 
mass to the new physics (high) scale:  

• In this talk: consider n~100s of Higgs bosons produced in the final state n lambda 
>> 1. Investigate scattering processes at ~ 100 TeV  energies. 

• HIGGSPLOSION: n-particle rates computed in a weakly-coupled theory can become 
unsuppressed above critical values of n and E. Perturbative and non-perturbative 
semi-classical calculations. n! ~ exponential growth with n or E. (Scale n~E/m). 

• A new unitarity problem — caused by the elementary Higgs bosons — appears to 
occur (?) for processes with large final state multiplicities n >> 1 

• HIGGSPLOSION offers a solution to both problems: it restores the unitarity of high-
multiplicity processes and dynamically cuts off the values of the loop momenta 
contributing to the radiative corrections to the Higgs mass. 

1 Introduction

The recent discovery of a light Higgs boson at the Large Hadron Collider (LHC) [1, 2] constitutes
an outstanding success of the Standard Model (SM) of particle physics. Before its discovery,
the presence of a light scalar boson with a mass within the reach of the LHC was predicted,
to ensure unitarity in scattering processes between longitudinal gauge bosons. While the SM
is certainly an incomplete theory of nature, it fails to explain the observed matter-antimatter
asymmetry and it does not provide a cold dark matter candidate, it is widely believed that the
Higgs boson interactions with all other SM particles renders it a self-consistent theory, up to
very high energy scales. As such it is currently arguably impossible to point to a specific energy
scale at which the SM has to be augmented by new physics to explain fundamental questions
in nature.

Yet, the Higgs boson, as a light elementary scalar particle, su↵ers from a so-called fine-
tuning problem. Quantum corrections are involuntarily dragging the Higgs boson mass to
the new physics mass scale mnew, viz m2

h ' m2
0 + �m2

new. In order to obtain the observed
physical mass of mh ' 125 GeV the bare parameter of the theory m0 has to be increasingly
precisely tuned, depending on how widely the electroweak scale is separated from the new
physics scale. The guiding principle that parameters of our quantum field theory should not
have to be unnaturally precisely tuned is currently our strongest argument for the existence
of a new physics scale, not too far away from the electroweak scale. Popular ways to avoid
the Hierarchy problem altogether are supersymmetric and composite Higgs models, which each
however have their own so-called little Hierarchy problems.

Looking beyond 2 ! 2 scattering processes, which are unitarized due to tree-level cancella-
tion e↵ects between gauge and Higgs boson interactions, the SM might still be an inconsistent
theory at energy scales as low as O(100) TeV, as perturbative unitarity might be violated in
2 ! nh multi-Higgs boson production processes. At su�ciently high energies it becomes kine-
matically possible to produce high multiplicity final states with n o 1 particles in a weakly
interacting theory. It was pointed out already more than a quarter of a century ago in Refs. [3, 4]
that the factorial growth in n can arise from the large numbers of Feynman diagrams contribut-
ing to the scattering amplitude Mn at large n. This reasoning works in any quantum field
theory where there is no destructive interference between Feynman diagrams in computations
of on-shell quantities, and is indeed the case in the scalar field theory with ��4-type inter-
actions [5], where tree graphs all have the same sign, and the leading-order high-multiplicity
amplitudes indeed acquire the factorial behaviour, Mn ⇠ �n/2 n!. This observation, assuming
that the amplitudes do not decay rapidly in moving o↵ the multi-particle thresholds, leads to
the factorial growth of the decay rates, �n ⇠ �n n!⇥fn(E), of highly energetic states and signals
that perturbation theory becomes e↵ectively strongly coupled for n > 1/� [6, 7, 8, 9, 10] and
can result in sharply growing with energy high-multiplicity observables. For example, it was
shown recently in Refs. [10, 11] that such high multiplicity production processes may be within
reach of a future hadron collider at 100 TeV. Already at 50 TeV the perturbative cross-sections
for 140 Higgs bosons are at picobarn level.

In this work, we will address both short-comings of the SM discussed: the Hierarchy problem
and the apparent breakdown of perturbative unitarity in high multiplicity processes simultane-
ously using the Higgsplosion mechanism. We will show that the sharply growing cross-sections
actually prevent the violation of perturbative unitarity in multi-Higgs processes and further nat-
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Organisation of the talk:

• Main idea and simple expressions for n-point 
amplitudes and rates 

• Interpretation of tree-level results;                                    
quantum effects: loops and semiclassical methods.                                 

• Higgsplosion at at e-e- and photon photon colliders   

•                                                           =>  Summary
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Compute 1 -> n amplitudes @LO with non-relativistic final-state momenta:         Off-threshold in phi^4 with SSB (Higgs-like)

19

� (@µ@µ +M2
h)' = 3�v '2 + �'3

This classical equation for '(x) = h(x)� v determines directly the structure of
the recursion relation for tree-level scattering amplitudes:
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Away from the multi-particle threshold, the external particles 3-momenta ~pi are
non-vanishing. In the non-relativistic limit, the leading momentum-dependent
contribution to the amplitudes is proportional to E kin

n (Galilean Symmetry),

An(p1 . . . pn) = An + Mn E
kin
n := An + Mn n " ,

" =
1

nMh
E kin

n =
1

n

1

2M2
h

nX

i=1

~p 2
i .

In the non-relativistic limit we have " ⌧ 1.

Tree-level 1⇤ ! n amplitudes in the limit " ! 0 for any n are given by

An(p1, . . . pn) = n!

✓
�

2M2
h

◆n�1
2

✓
1�

7

6
n"�

1

f

n

n� 1
"+O("2)

◆

In the large-n-non-relativistic limit the result is

An(p1, . . . pn) = n!

✓
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, n ! 1, " ! 0, n" = fixed

amplitude on the n-particle threshold

see classic 1992-1994 papers: 
Brown; Voloshin; 
Argyres, Kleiss, Papodopoulos 
Libanov, Rubakov, Son, Troitski 

more recently: VVK 1411.2925 

kinetic energy per particle per mass

L =
1

2
(@µh)
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4
(h2 � v2)2

prototype of the SM Higgs  
in the unitary gauge 

factorial growth
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Can now integrate over the n-particle phase-space

The cross-section and/or the n-particle partial decay �n

�n(s) =

Z
d�n

1
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2

The n-particle Lorentz-invariant phase space volume element

Z
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in the large-n non-relativistic limit with n"h fixed becomes,
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Son 1995; 
Libanov, Rubakov, Troitskii 1997;     more recently: VVK 1411.2925 

n � 1, " ⌧ 1
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The 1-loop corrected threshold amplitude for the pure n Higgs production:

�4
with SSB : A

tree+1loop
1!n = n! (2v)1�n

 
1 + n(n� 1)

p
3�

8⇡

!

There are strong indications, based on the analysis of leading singularities of the

multi-loop expansion around singular generating functions in scalar field theory,

that the 1-loop correction exponentiates,

Libanov, Rubakov, Son, Troitsky 1994

A1!n = A
tree
1!n ⇥ exp

⇥
B �n2

+ O(�n)
⇤

in the limit � ! 0, n ! 1 with �n2
fixed. Here B is determined from the

1-loop calculation (as above) – Smith; Voloshin 1992):
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In the Higgs model, 1st equation leads to the exponential enhancement of the

tree-level threshold amplitude at least in the leading order in n2�.

Now include loop corrections in the exponent of Higgsplosion

+�n
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Semi-classical approach for computing Higgsplosion rate 
• DT Son1995

Multi-particle decay rates �n can also be computed using an alternative semi-
classical method. This is an intrinsically non-perturbative approach, with no
reference in its outset made to perturbation theory.

The path integral is computed in the steepest descent method, controlled by
two large parameters, 1/� ! 1 and n ! 1.

� ! 0 , n ! 1 , with �n = fixed , " = fixed .

The semi-classical computation in the regime where,

�n = fixed ⌧ 1 , " = fixed ⌧ 1 ,

reproduces the tree-level perturbative results for non-relativistic final states.

Remarkably, this semi-classical calculation also reproduces the leading-order
quantum corrections arising from resumming one-loop e↵ects.
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• VVK 1705.04365

The semiclassical approach is equally applicable and more relevant to the real-

isation of the non-perturbative Higgsplosion case where,

�n = fixed � 1 , " = fixed ⌧ 1 .

This calculation was carried out for the spontaneously broken theory with the

result given by,
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
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Higher order corrections are suppressed by O(1/
p
�n) and powers of ".

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp
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�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the copupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log

✓
�n

4
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3
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. (3.14)
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Semi-classical approach for computing Higgsplosion rate 



using the semi-classical approach and the thin-wall approximation 

• VVK 1705.04365

Thus we have computed the rate R in the large lambda n limit: 
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]

R = exp
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
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Higgsplosion realised 
at large lambda n 

VVK & Spannowsky 1704.0344

The semiclassical approach is equally applicable and more relevant to the real-

isation of the non-perturbative Higgsplosion case where,

�n = fixed � 1 , " = fixed ⌧ 1 .

This calculation was carried out for the spontaneously broken theory with the

result given by,

Rn(�;n, ") = exp
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Higher order corrections are suppressed by O(1/
p
�n) and powers of ".
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constructive interference between n! diagrams for  
h*-> nh elementary scalars in a spontaneously broken QFTHiggsplosion

Why not observed somewhere 
else before?

• Gauge fields (gauge symmetry)
Higgs lacks symmetry to prevent Higgsplosion:

• Fermions (Pauli principle)

Integrable systems in 1+1 dim or even 
2+1 dimensional scalar QFTs: 

The cases in <4 dimensions are special - 
different IR dynamics of quantum loops

Our current understanding: Need spontaneously broken scalar QFT in at least 3+1 
10

e.g. simple Parke-Taylor ’86 amplitudes

zero at threshold and phase space scales 1/N!

Quantum Mechanics: too simple 0+1 dims

Intuitive reason for Higgsplosion:



The optical theorem now relates the 1* -> nh amplitudes with the imaginary 
part of the self-energy (valid to all orders)

5. The Z� constant is used to define the renormalised quantities �R(p) and ⌃R(p2),

�R(p) = Z (�1)
� �(p) , (2.10)

⌃R(p) = Z�

�
⌃(p2) � ⌃(m2) � ⌃0(m2)(p2 � m2)

�
. (2.11)

Hence, the result for the renormalised propagator in terms of all finite quantities is,

�R(p) =
i

p2 � m2 � ⌃R(p2) + i✏
. (2.12)

6. The optical theorem provides the physical interpretation of the imaginary part of the

self-energy in terms of the momentum-scale dependent decay width �(p2),

� Im⌃R(p
2) = m�(p2) , (2.13)

with the decay width being determined by the partial widths of n-particle decays at

energies s � (nm)2,

�(s) =
1X

n=2

�n(s) , �n(s) =
1

2m

Z
d�n

n!
|M(1 ! n)|2 . (2.14)

Here M is the amplitude for the 1⇤ ! n process, the integral is over the n-particle

Lorentz-invariant phase space, and 1/n! is the Bose-Einstein symmetry factor for n

spin-zero particles produced in the final state.

7. The origin of Higgsplosion [1] is that the scattering amplitudes M(1 ! n), and con-
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!

✓
�

M2
h

◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain

6

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp


n

✓
log

�n

4
� 1

◆
+

3n

2

⇣
log

"

3⇡
+ 1

⌘
�

25

12
n"

�
, (3.9)

�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),

f0(�n) = log

✓
�n

4

◆
� 1 , (3.12)

f(")|"!0 ! f(")asympt =
3

2

⇣
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⌘
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⌘
�

25

12
" . (3.13)

One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log

✓
�n

4

◆
� 1 +

p
3
�n

4⇡
. (3.14)
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the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
1�loop = log
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Extreme energy dependence for 1  ->  n cross section
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The first step in our programme is to determine the multi-particle amplitudes describing the
1⇤ ! n transitions of the highly virtual Higgs boson into n non-relativistic Higgses at the
leading order (i.e. tree-level) in perturbation theory. We take the bosons in the final state
to be non-relativistic because we are interested in keeping the number of particles n in the
final state as large as possible, that is, near the maximum number allowed by the phase space,
n . nmax = E/Mh. Such n-point amplitudes were studied in detail in scalar QFT in [5, 7] and
were derived for the theory of Eq. (3.1) with spontaneous symmetry breaking in Ref. [9],

A1⇤!n(p1 . . . pn) = n! (2v)1�n exp


�
7

6
n "

�
, n ! 1 , " ! 0 , n" = fixed . (3.3)

Note that the expression above is for the 1⇤ ! n current, and the conventionally-normalised
amplitude A1⇤!n is obtained from it by the LSZ amputation of the single o↵-shell incoming
line,

M1!n := (s�M2
h) · A1⇤!n(p1 . . . pn) . (3.4)

As indicated, these tree-level amplitudes are computed in the double-scaling limit with large
multiplicities n � 1 and small non-relativistic energies of each individual particle, " ⌧ 1, where

" =

p
s� nMh

nMh
=

1

nMh
E kin

n '
1

n

1

2M2
h

nX

i=1

~p 2
i , (3.5)

so that the total kinetic energy per particle mass n" in the final state is fixed. The first factor
on the right-hand side of Eq. (3.3) corresponds to the tree-level amplitude (or more precisely a
current with one incoming o↵-shell leg) computed on the n-particle threshold,

A
thr.
1!n = n! (2v)1�n = n!
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M2
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◆n�1
2

, (3.6)

or, equivalently, after the LSZ reduction of the incoming line,

M
thr.
1!n = n! (n2

� 1)
�

n�1
2

Mn�3
h

, (3.7)

which is an exact expression for tree-level amplitudes valid for any value of n [5]. The kinematic
dependence in Eq. (3.3) then produces in the non-relativistic limit an exponential form-factor
which has an analytic dependence on the kinetic energy of the final state n". But, importantly,
the factorial growth ⇠ �n/2 n! characteristic to the multi-particle amplitude on mass threshold
remains. Its occurrence can be traced back to the factorially growing number of Feynman
diagrams at large n [14, 15, 16] and the lack of destructive interference between the diagrams in
the scalar theory. We refer the reader to Refs. [5, 7, 9] for more detail about these amplitudes.

The next step is to integrate the amplitudes in Eq. (3.3) over the n-particle phase-space at
large n (in the approximation where the outgoing particles are non-relativistic). The relevant
dimensionless quantity describing the multi-particle processes is

Rn(s) :=
1

2M2
h

Z
d⇧n|M(1 ! n)|2 , (3.8)

and the decay rates �n(s) and the cross-sections �n(s) are obtained from Rn(s) after an ap-
propriate overall rescaling with Mh and s. Following in the steps of Refs. [8, 9], we obtain

6

the characteristic exponential expression for the 1 ! n particles rate R in the high-energy,
high-multiplicity limit:

R(�;n, ") = exp
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�n(s) / R(�;n, ") , and �n(s) / R(�;n, ") .

In particular, note that the ubiquitous factorial growth of the large-n amplitudes translates into
the 1

n! |Mn|
2
⇠ n!�n

⇠ en log(�n) factor in the rate R above.
To summarise our discussion so far, let us consider the multi-particle limit n � 1 and scale

the center-of-mass energy
p
s = E linearly with n, E / n, keeping the coupling constant small

at the same time, � ⌧ 1. It was pointed out first in Refs. [7, 8], and then argued for extensively
in the literature, that in this limit the multi-particle rates have a characteristic exponential
form,

R = enF (�n, ") , for n ! 1 , � ! 0 , " = fixed , (3.10)

where it is assumed that the high-multiplicity, weak-coupling limit above, the factor �n is
held fixed, while the fixed value can be small or large (with the former case allowing for a
perturbative treatment, while the latter one requiring a large �n resummation of perturbation
theory, somewhat reminiscent to the large g2Nc ’t Hooft coupling limit in gauge theories). The
quantity " is the average kinetic energy per particle per mass in the final state of Eq. (3.5), and
F (�n, ") is a certain a priori unknown function of two arguments. At tree-level, the dependence
on �n and ", factorises into individual functions of each argument,

F tree(�n, ") = f0(�n) + f(") , (3.11)

and the two independent functions are given by the following expressions in the Higgs model of
Eq. (3.1), in complete agreement with the expression Eq. (3.9),
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One can further come up with various improvements in the understanding and control of
the exponential behaviour of the multi-particle rate. In particular, at tree-level the function
f0(�n) is fully determined, but the second function, f("), characterising the energy-dependence
of the final state, is determined by Eq. (3.13) only at small ", i.e. near the multi-particle
threshold. This point was addressed recently in Ref. [10] where the function f(") was computed
numerically in the entire range 0  " < 1.

What about the inclusion of loop corrections to the tree-level multi-particle rates above?
This has been achieved at the leading order in �n in Ref. [7] by resumming the one-loop
correction to the amplitude on the multi-particle mass threshold computed in Refs. [17, 18].
The result is that the 1-loop correction in the Higgs theory under consideration does not a↵ect
the factorial growth, but provides an exponential enhancement to the rate (though strictly
speaking it is valid only at small values of �n) and results in the modified expression for f0,

f0(�n)
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• Unitarity restored!
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Prospects of direct observation of Higgslposion
Vector boson fusion at high-energy pp colliders (FCC)

…

n non-relativistic Higgses 
Higgsplosion at 

Propagator with Higgspersion at 

i

s⇤ �m2
h � Re⌃̃(s⇤) + imh�(s⇤)

p
s⇤

p
s⇤

p
s⇤

p
s0

quark pdfs

quark pdfs

energy excess over         carried away by jets
p
s⇤

100 120 140 160 180
10-10

10-6

0.01

100

106

1010

n

R

EêM=205

EêM=200

EêM=195

EêM=190

Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q

�n
4⇡ .

As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted

8

�n/M
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• preliminary: no Higgs 
decays into SM d.o.f 
included;                         
& no vector bosons in 
final states

Vector boson fusion at high-energy pp colliders (FCC)

using pt jet > 40 GeV
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Vector boson fusion at high-energy e+e- colliders: ALEGRO

…

n non-relativistic Higgses 
Higgsplosion at 

Propagator with Higgspersion at 
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Figure 1: Partial decay widths (in units of mass Mh) of a highly-energetic single-particle state
into n Higgs bosons h plotted as function of n. The four lines correspond to the energies of the
initial state equal 190Mh, 195Mh, 200Mh and 205Mh, as indicated. There is a sharp exponential
dependence of the peak rate on the energy varying from R . 10�6 at E = 190Mh (red line) to
R & 107 at E = 205Mh (black line). The peak multiplicities n? ⇠ 150 in these examples are
not far from the maximally allowed values at the edge of the phase space nmax ⇠ E/Mh.

Of phenomenological interest is whether the multi-particle rates can become observable
at certain energy scales and, at even higher energies, exponentially large – in the limit of
near maximal kinematically allowed multiplicities. To answer this, it is required to resum
the perturbation theory and address the large �n limit. Very recently, we have computed
the exponential rate in the �n � 1 limit using the Landau WKB-based formalism, following
the approach of Ref. [8]. These results will be reported in a forthcoming publication [19].
The correction to the tree-level rate in the non-relativistic regime is found to be of the form

⇡ +3.02n
q
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As a result, the non-perturbatively corrected multi-particle rate in Eq. (3.9) becomes [19]
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This expression is derived at small " and thus is supposed to hold in the non-relativistic limit.
The resulting rates have a sharp exponential dependence on n and, consequently, on energy.

In order to be able to probe su�ciently high multiplicities, they have to be kinematically
allowed, i.e. in our single-field example, n < nmax = E/Mh. The amplitudes grow with n,
as exp[n log �n], reaching their maximal values in the soft limit where n is maximal, but this
e↵ect is counter-acted by the diminishing phase-space volume near the edge of the kinematically
accessible region. The competition between the two e↵ects is clearly seen in the expressions
for R already at tree-level in Eq. (3.9) and similarly in the re-summed perturbation theory
expression in Eq. (3.15). The growth of the exponent in R with increasing �n is counteracted
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Prospects of direct observation of Higgslposion
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More generally should include multiple longitudinal  
vector boson production into Higgsplosion processes:

e+e�VBF ! h + ⌫̄⌫ ! n⇥ h + ⌫̄⌫

e+e�VBF ! Z0 + ⌫̄⌫ ! Z0 + n⇥ h ⌫̄⌫

e+e�VBF ! Z0 + ⌫̄⌫ ! Z0 + nh ⇥ h + n0 ⇥ V̄LVL + ⌫̄⌫

Where any of the Vector boson pairs are V̄LVL = W+W� or V̄LVL = Z0Z0.
This should be the dominant process.

Vector boson fusion at high-energy e+e- colliders: ALEGRO
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One can also look for the disappearance 
of the e+e-  ->  mu+ mu- rates above E*

Higgspersion for exclusive 2 to 2 s-chanel processes 

But not for: 
�(e+e� ! µ+µ�)

�(e+e� ! e+e�)

disappearing at
p
s > E⇤
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Photon fusion at photon-photon colliders: ALEGRO

…

n non-relativistic Higgses 
Higgsplosion at 

Propagator with Higgspersion at 

i
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h � Re⌃̃(s⇤) + imh�(s⇤)
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A conventional wisdom: in the description of nature based on a local QFT, one

should always be able to probe shorter and shorter distances with higher and

higher energies.

Higgsplosion is a dynamical mechanism, or a new phase of the theory, which

presents an obstacle to this principle at energies above E⇤.

E⇤ is the new dynamical scale of the theory, where multi-particle decay rates

become unsuppressed.

Schematically, E⇤ = C m
� , where C is a model-dependent constant of O(100).

This expression holds in the weak-coupling limit � ! 0.

Summary of the main idea

E* ~ 25 -100 TeV



Asymptotic Safety
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For all parameters of the theory (running coupling constants, masses, etc):

10�3 10�2 10�1 100 101 102 103

µ/E⇤

100

�
(µ

)/
�
(E

⇤)

Higgsplosion

No Higgsplosion

UV fixed point
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Higgsplosion

At energy scales above E⇤ the dynamics of the system is changed:

1. Distance scales below |x| . 1/E⇤ cannot be resolved in interactions;

2. UV divergences are regulated;

3. The theory becomes asymptotically safe;

4. And the Hierarchy problem of the Standard Model is therefore absent.

Consider the scaling behaviour of the propagator of a massive scalar particle

�(x) := h0|T (�(x)�(0))|0i ⇠

8
><

>:

m2 e�m|x|
: for |x| � 1/m

1/|x|2 : for 1/E⇤ ⌧ |x| ⌧ 1/m

E2
⇤ : for |x| . 1/E⇤

,

where for |x| . 1/E⇤ one enters the Higgsplosion regime.

This is a non-perturbative criterium. Can in principle be computed on a lattice.
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Loop integrals are e↵ectively cut o↵ at E⇤ by the exploding width �(p2) of the
propagating state into the high-multiplicity final states.

The incoming highly energetic state decays rapidly into the multi-particle state
made out of soft quanta with momenta k2i ⇠ m2 n E2

⇤ .

The width of the propagating degree of freedom becomes much greater than its
mass: it is no longer a simple particle state.

In this sense, it has become a composite state made out of the n soft particle
quanta of the same field �.

Higgsplosion

• VVK & Michael Spannowsky 1704.03447, 1707.01531

Propagators



Summary 

• The Higgsplosion / Higgspersion mechanism makes theory UV finite  (all 
loop momentum integrals are dynamically cut-off at scales above the  
Higgsplosion energy). 

• UV-finiteness => all coupling constants slopes become flat above the 
Higgsplosion scale => automatic asymptotic safety 

• [Below the Higgsplosion scale there is the usual logarithmic running] 

• 1. Asymptotic Safety 

• 2. No Landau poles for the U(1) and the Yukawa couplings 

• 3. The Higgs self-coupling does not turn negative => stable EW vacuum 

• No new physics degrees of freedom required — very minimal solution
23



Additional slides
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• The n! growth of perturbative amplitudes is not entirely surprising: the number of 
contributing Feynman diagrams is known to grow factorially with n. [In scalar QFT 
there are no partial cancellations between individual diagrams (unlike QCD).] 

• Important to distinguish between the two types of large-n corrections: 

• (a) present case where the leading-order tree-level contribution to the 1*->n Amplitude 
grows factorially with the particle multiplicity n of the final state.  

• (b) higher-order perturbative corrections to some leading-order quantities 

• These amplitudes were first studied in the 90s in scalar QFTs  

• But now it is realised that the characteristic energy scale for EW applications starts 
in the 50-100 TeV range. Future colliders: (FCC, ALEGRO e+e-, photon-photon) 
would provide an exciting challenge to realise this in the context of the multi- Higgs 
and Massive Vector bosons production in the SM.

25
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Contrast asymptotic growth of higher-order corrections in  
perturbation theory with the ~n! contributions to Gamma_n(s)

Higgsplosion is not the same as the high orders tail of pert. theory
It is the decay width Gamma_n(s) which is the central object of interest 
and the driving force of Higgsplosion.


