

Ozone Generation with a Flexible Solid-State Marx Generator

J. J. van Oorschot¹

T. Huiskamp¹

M. Pereira²

L. M. Redondo³

¹Eindhoven University of Technology

²Energy Pulse Systems

³Instituto Superior de Engenharia de Lisboa

Previous results: high-efficiency ozone generation

Specifications

- Up to 50 kV (pos and neg)
- 0.5-10 nanosecond
- <200 ps rise time
- Up to 1 kHz
- Flushed oil spark gap

Results

- Up to 160 g/kWh ozone production
- Very efficient, but not a practical system!

New project:

 Use flexible solid state Marx generator for robust, practical ozone generation

Solid-state Marx generator

Marx generator developed at Energy Pulse Systems:

- Up to 15 kV pulses (15 stages of 1 kV)
- Pulse duration: variable from 200 ns to 100 μs
- Repetition rate up to several kHz
- Burst mode operation possible (burst frequency up to 200 kHz)

Solid-state Marx generator circuit operation

- 1kV per stage charging through diodes (and switches)
- 1.2 kV SiC MOSFETs for fast, efficient switching
 - Tpi: discharging capacitors over load
 - Tci: discharging load and charging capacitors between pulses
- Series resistors for damping and current limiting

Total system

- DC PSU decoupled with filter (and with Taux during pulsing)
- Marx controlled with µP (programmed from PC)

Practical implementation

A: Marx generator

B: Input filter

C: Control board

D: HV connector

E: Current sensor

Experimental setup

DBD plasma

Results: voltage

Ozone yield calculation

- $E_p = \int v * i \ dt \ [\mathsf{J}]$
- $\epsilon = \frac{f_{rr}E_p*60}{F}$ [J/L]
- $G_{O_3} = \frac{C_{O_3}*48*3.6}{V_m \epsilon} [g/kWh]$

Results

- Higher voltage: higher yield
- Higher repetition rate: lower yield
- Gas heating effects

Results: air flow

Ozone yield calculation

•
$$E_p = \int v * i \ dt \ [\mathsf{J}]$$

•
$$\epsilon = \frac{f_{rr}E_p*60}{F}$$
 [J/L]

•
$$G_{O_3} = \frac{C_{O_3}*48*3.6}{V_m \epsilon} [g/kWh]$$

Results

- Higher air flow: higher yields
- Gas heating effects

Results: burst mode

Normal operation

Burst mode operation

Results: burst mode

Results

- Higher burst frequency: lower ozone yield
- Higher repetition rate: lower ozone yield

Explanation

- Space and surface charges dominate the discharge
- Gas heating effects

Conclusion

 Burst rate operation not efficient for ozone generation

Overall results

Solid state (this work)

Spark-gap based (previous work)

Conclusions

- Maximum yields around 80 g/kWh vs. 160 g/kWh for faster pulses
- Promising practical application with solid-state

Thank you for your attention