

IPMHVC 2018

Study on the Nonlinear Vibration Characteristic of Dry-Type Air-Core Reactor

Zhitong Jiang^{*}, Lingyu Zhu, Hang Yang, Shengchang Ji, Xinqian Xia, Jinyu Li and Hantao Cui Xi'an Jiaotong University Jackson Lake Lodge, WY June 5th, 2018

- Introduction
- Theoretical analysis
- Experimental analysis
- Conclusions

Introduction

Dry-type air-core reactor one of the main noise sources in HVDC convertor stations.

Structure of dry-type air-core reactor

AC filter reactor

Commonly accepted linear model

The vibration of dry-type air-core reactor is proportional to the electromagnetic force and the square current. $v \propto F \propto BI \propto I^2$

IEC60076-6:2007 standards suggests to decomposite multiple frequency excitation into sum frequency, difference frequency and double frequency.

-lowever, the coupling of magnetic	
field and vibration is not m_	\uparrow
considered, which cause the $k \ge k$	D
nonlinear relationship between m ₂	<u> </u>
magnetic force and square current.	

When the vibration happens, the magnetic field generated by the current in wires will be changed.

In this paper: 1. The problem is mathematically modeled 2. The resulting vibration spectrum is analyzed. 3. The actual vibration is measured and make the comparison.

Theoretical Analysis

Two-wire model

Lagrangian function

$$L = E_{k} - E_{p}(r) = \frac{1}{2}m_{1}r_{1}^{\prime 2} + \frac{1}{2}m_{2}r_{2}^{\prime 2} - E_{e}(|r_{1} - r_{2}|) - E_{B}$$

 E_k is the kinetic energy. E_p is the potential energy of the system. E_e is the elastic potential energy of the system. E_B is the magnetic potential energy.

Vibration equation

$$\frac{d}{dt}\frac{\partial L}{\partial r'} - \frac{\partial L}{\partial r} = 0 \qquad \qquad \text{Equilibrium position } r_0 \quad E_e(r_0, t) = 0 \left. \frac{\partial E_e}{\partial r} \right|_{r=r_0} = 0$$

As the Taylor expansion of the elastic potential energy and the magnetic field potential energy at equilibrium position can be written as:

$$\begin{split} E_B &= E_B(r_0, t) + \frac{\partial E_B}{\partial r} \bigg|_{r=r_0} (r-r_0) + \frac{\partial^2 E_B}{\partial r^2} \bigg|_{r=r_0} (r-r_0)^2 \\ &= \frac{1}{2} \frac{\mu l}{\pi} I^2 (\ln(\frac{r_0}{r_x}) + \frac{1}{4} + \frac{1}{r_0} (r-r_0) - \frac{1}{2} \frac{1}{r_0^2} (r-r_0)^2) \\ E_e(|r_1 - r_2|) &= E_{e0} + \frac{\partial E_e}{\partial r} \bigg|_{r=r_0} (r-r_0) + \frac{1}{2} \frac{\partial^2 E_e}{\partial r^2} \bigg| (r-r_0)^2 = \frac{1}{2} k (r-r_0)^2 \end{split}$$

Then we get the vibration equation of the two-wire model:

$$mr'' + k(r - r_0) + \frac{1}{2}\frac{\mu l}{\pi}I^2(\frac{1}{r_0} - \frac{1}{r_0^2}(r - r_0)) = 0$$

 $\Im \mathbf{\Gamma}$

Let $y = r - 2r_0$, the vibration equation can be rewritten as :

$$y'' + (\omega_0^2 - \beta I^2)y = \frac{-kr_0}{m}$$

Method of perturbation is used here.

Taylor expansion y to the third power of β can be expressed as:

$$y_0'' + \omega_0^2 y_0 = -\frac{kr_0}{m}$$

$$y_1'' + \omega_0^2 y_1 = y_0 I^2$$

$$y_2'' + \omega_0^2 y_2 = y_1 I^2$$

$$y_3'' + \omega_0^2 y_3 = y_2 I^2$$

 $y(t,\beta) = y_0(t) + y_1(t)\beta + y_2(t)\beta^2 + y_3(t)\beta^3$

Apply single frequency current $I = I_s \cos(\omega_s t)$

Expression

Frequency components

$$I^{2} \qquad 2\omega_{s}$$

$$y_{0} \qquad y_{0}'' + \omega_{0}^{2}y_{0} = -\frac{kr_{0}}{m} \qquad \mathbf{0}$$

$$\downarrow \pm 2\omega_{s}$$

$$y_{1} \qquad y_{1}'' + \omega_{0}^{2}y_{1} = y_{0}I^{2} \qquad 2\omega_{s}$$

$$\downarrow \pm 2\omega_{s}$$

$$y_{2} \qquad y_{2}'' + \omega_{0}^{2}y_{2} = y_{1}I^{2} \qquad 4\omega_{s} \qquad \mathbf{Current frequency} \qquad \omega_{s}$$

$$\downarrow \pm 2\omega_{s}$$

$$y_{3} \qquad y_{3}'' + \omega_{0}^{2}y_{3} = y_{2}I^{2} \qquad 2\omega_{s} \ 6\omega_{s} \ \text{Vibration frequency} \qquad 2\omega_{s} \ 4\omega_{s} \ 6\omega_{s}$$

Loading multiple frequency current, take double frequency as an example:

Current frequency Vibration frequency

$$\omega_{S1} \quad \omega_{S2}$$

$$2\omega_{S1} \quad 2\omega_{S2} \qquad \omega_{S1} \pm 3\omega_{S2} \qquad 2\omega_{S1} \pm 2\omega_{S2}$$

$$\omega_{S1} \pm \omega_{S2} \qquad 3\omega_{S1} \pm \omega_{S2} \qquad 4\omega_{S1} \qquad 4\omega_{S2}$$

Experimental Analysis

PART The experimental setup

The inductance value of reactor is 1.97 mH. The test reactor rated current is 270 A.

Single frequency current: 450Hz 80A

Loading single frequency current

(E) あ歩え

Other than double frequency component, there are still higher harmonic components in the spectrum

Vibration spectrum of reactor

Loading triple frequencies current

The spectrum contains more components than the linear model and is consistent with our theoretical analysis.

III Impact of nonlinearity

Vibration component of 900Hz with different applying way

If the nonlinearity is not considered, huge deviation could be introduced.

Conclusions

- One of the main cause of the nonlinearity of dry-type air-core reactor is the coupling of the magnetic field and the motion of the reactor.
- Other frequency exists besides the sum, difference and double components of the current frequency.
- Applied with the same current square of one frequency component, the vibration of drytype air-core reactor verifies greatly with the change of the applying way.

Thanks for your attention!