

IPMHVC 2018

Study on the Nonlinear Vibration Characteristic of Dry-Type Air-Core Reactor

Zhitong Jiang* , Lingyu Zhu, Hang Yang,Shengchang Ji, Xinqian Xia, Jinyu Li and Hantao Cui Xi'an Jiaotong University Jackson Lake Lodge, WY June 5th, 2018

- **Introduction**
- **Theoretical analysis**
- **Experimental analysis**
- **Conclusions**

Introduction

Dry-type air-core reactor one of the main noise sources in HVDC convertor stations.

AC filter reactor **Structure of dry-type air-core reactor**

PART **Commonly accepted linear model**

The vibration of dry-type air-core reactor is proportional to the electromagnetic force and the square current. $v \propto F \propto B I \propto I^2$

IEC60076-6:2007 standards suggests to decomposite multiple frequency excitation into sum frequency, difference frequency and double frequency.

When the vibration happens, the magnetic field generated by the current in wires will be changed.

In this paper:

- The problem is mathematically modeled
- 2. The resulting vibration spectrum is analyzed.
- 3. The actual vibration is measured and make the comparison.

Theoretical Analysis

Two-wire model

Lagrangian function

Lagrangian function
\n
$$
L=E_k - E_p(r) = \frac{1}{2} m_1 r_1'^2 + \frac{1}{2} m_2 r_2'^2 - E_e(|r_1 - r_2|) - E_B
$$
\n
$$
E_k = \frac{1}{2} m_1 r_1'^2 + \frac{1}{2} m_2 r_2'^2 - E_e(|r_1 - r_2|) - E_B
$$

is the kinetic energy. is the potential energy of the system. is the elastic potential energy of the system. is the magnetic potential energy. E_{k} $E_p^{\Huge \cdot \quad}$ $E_{_e}^{\cdot}$ $\vec{E_B}$

Vibration equation

$$
\frac{d}{dt}\frac{\partial L}{\partial r'} - \frac{\partial L}{\partial r} = 0
$$
\nEquilibrium position r_0

\n
$$
E_e(r_0, t) = 0 \left. \frac{\partial E_e}{\partial r} \right|_{r=r_0} = 0
$$

As the Taylor expansion of the elastic potential energy and the magnetic field potential energy at equilibrium position can be written as:

Basic two-wire model
\nation equation
\n
$$
\frac{d}{dt} \frac{\partial L}{\partial r'} - \frac{\partial L}{\partial r} = 0
$$
\n**Equilibrium position** r_0 $E_e(r_0, t) = 0$ $\frac{\partial E_e}{\partial r}\Big|_{r=r_0} = 0$
\nthe Taylor expansion of the elastic potential energy and the
\nmetric field potential energy at equilibrium position can be written as:
\n
$$
E_B = E_B(r_0, t) + \frac{\partial E_B}{\partial r}\Big|_{r=r_0} (r - r_0) + \frac{\partial^2 E_B}{\partial r^2}\Big|_{r=r_0} (r - r_0)^2
$$
\n
$$
= \frac{1}{2} \frac{\mu l}{\pi} I^2 (\ln(\frac{r_0}{r_x}) + \frac{1}{4} + \frac{1}{r_0} (r - r_0) - \frac{1}{2} \frac{1}{r_0^2} (r - r_0)^2)
$$
\n
$$
E_e(|r_1 - r_2|) = \sum_{R_Q} + \frac{\partial E_e}{\partial r}\Big|_{r=r_0} (\kappa - r_0) + \frac{1}{2} \frac{\partial^2 E_e}{\partial r^2} \Big|_{r=r_0} (r - r_0)^2 = \frac{1}{2} k(r - r_0)^2
$$
\nwe get the vibration equation of the two-wire model:
\n
$$
mr'' + k(r - r_0) + \frac{1}{2} \frac{\mu l}{\pi} I^2 (\frac{1}{r_0} - \frac{1}{r_0^2} (r - r_0)) = 0
$$
\n(3.533448)

Then we get the vibration equation of the two-wire model:

$$
mr'' + k(r - r_0) + \frac{1}{2} \frac{\mu l}{\pi} I^2 \left(\frac{1}{r_0} - \frac{1}{r_0^2} (r - r_0) \right) = 0
$$

Let $y = r - 2r_0$, the vibration equation can be rewritten as :

$$
y'' + (\omega_0^2 - \beta I^2) y = \frac{-kr_0}{m}
$$

Method of perturbation is used here.

Taylor expansion *y* **to the third power of** *β* **can be expressed as:**

Solution of vibration equation
\n
$$
y'' + (\omega_0^2 - \beta I^2)y = \frac{-kr_0}{m}
$$

\n**Method of perturbation is used**
\n**Figure 2.1**
\n**Taylor expansion y to the third**
\n**power of** β can be expressed as:
\n $y_0'' + \omega_0^2 y_0 = -\frac{kr_0}{m}$
\n $y_0'' + \omega_0^2 y_1 = y_0 I^2$
\n $y_0'' + \omega_0^2 y_1 = y_0 I^2$
\n $y_0'' + \omega_0^2 y_1 = y_0 I^2$
\n $y_0'' + \omega_0^2 y_2 = y_1 I^2$
\n $y_2'' + \omega_0^2 y_2 = y_1 I^2$
\n $y_3'' + \omega_0^2 y_3 = y_2 I^2$
\n $y_3'' + \omega_0^2 y_3 = y_3 I^2$
\n $y_3'' + \omega_0^2 y_3 = y_3 I^2$

Apply single frequency current $I = I_s \cos(\omega_s t)$

Expression Frequency components

Solution of vibration equation		
Expression	Frequency components	
I^2	$2\omega_s$	
y_0	$y_0'' + \omega_0^2 y_0 = -\frac{kr_0}{m}$	0
$\pm 2\omega_s$	$\pm 2\omega_s$	
y_1	$y_1'' + \omega_0^2 y_1 = y_0 I^2$	$2\omega_s$
$\pm 2\omega_s$	$\pm 2\omega_s$	
y_2	$y_2'' + \omega_0^2 y_2 = y_1 I^2$	$4\omega_s$
y_3	$y_3'' + \omega_0^2 y_3 = y_2 I^2$	$2\omega_s 6\omega_s$

\nVibration frequency $2\omega_s$ $4\omega_s 6\omega_s$

Loading multiple frequency current, take double frequency as an example:

Current frequency Vibration frequency

$$
\omega_{s_1}
$$
 ω_{s_2} \n
$$
2\omega_{s_1} 2\omega_{s_2}
$$
\n
$$
\omega_{s_1} \pm \omega_{s_2}
$$
\n
$$
\omega_{s_1} \pm \omega_{s_2}
$$
\n
$$
3\omega_{s_1} \pm \omega_{s_2}
$$
\n
$$
4\omega_{s_1}
$$
\n
$$
4\omega_{s_2}
$$

Experimental Analysis

PART **The experimental setup**

The inductance value of reactor is 1.97 mH. The test reactor rated current is 270 A.

Single frequency current: 450Hz 80A

Loading single frequency current

(◎) F^F

Other than double frequency component, there are still higher harmonic components in the spectrum

PART **Vibration spectrum of reactor**

Loading triple frequencies current

The spectrum contains more components than the linear model and is consistent with our theoretical analysis.

PART **Impact of nonlinearity**

Applied with the same current square of 900Hz

Vibration component of 900Hz with different applying way

If the nonlinearity is not considered, huge deviation could be introduced.

Conclusions

- One of the main cause of the nonlinearity of dry-type air-core reactor is the coupling of the magnetic field and the motion of the reactor.
- Other frequency exists besides the sum, difference and double components of the current frequency.
- Applied with the same current square of one frequency component, the vibration of drytype air-core reactor verifies greatly with the change of the applying way.

Thanks for your attention!