The Design of Magnetically Insulated Transmission Lines*

R. B. Spielman & D. B. Reisman
Idaho Accelerator Center
Idaho State University
Pocatello, ID

Presented at the Int. Power Modulator and High Voltage Conference
June 5, 2018 Session ID: 0805

*This work was supported by the University of Rochester Laboratory for Laser Energetics
We design magnetically insulated transmission lines using a circuit code and the Z flow MITL model

• Our goal is to provide a MITL profile that optimizes the coupling of electrical energy to a reactive load.
 – Multi-disk vacuum transmission lines and a post hole convolute are modeled.
 – We use a z-pinch load.

• We use Screamer, an open-source circuit code, originally developed by Sandia National Laboratories to model the MITL performance.
 – Screamer contains physics-based models for magnetically insulated transmission lines (MITLs).

• We also use the Z_{flow} model developed by Mendel and Ottinger to examine the “quality” of the magnetic insulation.
 – Compare the vacuum impedance Z_{vac} to the flow impedance Z_{flow}.
 – Compare the cathode current to the vacuum electron flow current.
 – Calculate the sheath thickness of the vacuum electrons.
We will model a short, 2-Ω impedance MITL as Part of a Two-Disk Design Operating at 15 TW

• Time prohibits us from showing the iterative steps in the design.
• A constant vacuum impedance provides a constant E/cB over the entire transmission line (if terminated in a constant impedance).
 – This is not true if the MITL is terminated into a reactive load.
• The desire for a low, total vacuum inductance drives us to low impedance MITLs as \(L_{\text{MITL}} \sim Z_{\text{vac}} \tau \), where \(\tau \) is the length of the MITL in seconds.
• Limitations on the minimum MITL impedance (inductance) include:
 – Magnitude of the electron losses during the set up of magnetic insulation.
 – Characteristics of the steady-state MITL including vacuum electron flow and sheath thickness.
• Clearly the final choice for MITL impedance is driven the desire for low inductance (driving \(Z_{\text{vac}} \) down) and minimum electron flow and sheath thickness (driving \(Z_{\text{vac}} \) up).
• With this as the background we describe the modeling and performance of a MITL with \(Z_{\text{vac}} = 2 \) Ω driven by a 0.125-Ω, 15-TW pulsed-power system.
This idealized configuration is modeled in Screamer.

We start with a non-emissive vacuum feed (vacuum flare) and transition to the 2-Ω MITL as quickly as possible.

- The minimum gap in the MITL is 1 cm.
- The MITL is divided into 10, individual MITL segments for physics clarity.
Screamer inputs a voltage pulse (from constant-impedance water lines) to drive the MITL

![Graph showing voltage over time]

- **V_stack_B**
- **V_stack_A**

Zmitl = 2 Ω
Each Disk Feed has Its Own Current

- $Z_{m, I} = 2 \text{ } \Omega$

- I_{stack_B}
- I_{load}
- I_{stack_A}
We Can Examine the Current in the 10, B-Level MITL Segments
We Now Examine the Electron Loss Current in the 10, B-Level MITL segments

![Graph showing current vs. time for different segments of MITL with Zmitl = 2 Ω.](image)
We Now Examine the Electron Loss Current Density in the 10, B-Level MITL segments
Here Are the Quantitative Z_{flow} MITL Characteristics at Peak Voltage

<table>
<thead>
<tr>
<th>MITL Seg.</th>
<th>Radial Location (cm)</th>
<th>AK Gap (cm)</th>
<th>V_a (MV)</th>
<th>E_c (kV/cm)</th>
<th>I_a (MA)</th>
<th>Z_{flow} (Ω)</th>
<th>I_c (MA)</th>
<th>I_{vac} (kA)</th>
<th>h_{sh} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>144.95</td>
<td>4.835</td>
<td>1.28</td>
<td>265</td>
<td>2.77</td>
<td>1.978</td>
<td>2.693</td>
<td>77</td>
<td>0.52</td>
</tr>
<tr>
<td>2</td>
<td>132.85</td>
<td>4.431</td>
<td>1.22</td>
<td>275</td>
<td>2.77</td>
<td>1.980</td>
<td>2.701</td>
<td>69</td>
<td>0.45</td>
</tr>
<tr>
<td>3</td>
<td>120.75</td>
<td>4.028</td>
<td>1.17</td>
<td>290</td>
<td>2.77</td>
<td>1.980</td>
<td>2.706</td>
<td>64</td>
<td>0.40</td>
</tr>
<tr>
<td>4</td>
<td>108.65</td>
<td>3.624</td>
<td>1.12</td>
<td>309</td>
<td>2.77</td>
<td>1.981</td>
<td>2.712</td>
<td>58</td>
<td>0.34</td>
</tr>
<tr>
<td>5</td>
<td>96.55</td>
<td>3.220</td>
<td>1.07</td>
<td>332</td>
<td>2.77</td>
<td>1.982</td>
<td>2.717</td>
<td>53</td>
<td>0.29</td>
</tr>
<tr>
<td>6</td>
<td>84.45</td>
<td>2.817</td>
<td>1.01</td>
<td>359</td>
<td>2.77</td>
<td>1.983</td>
<td>2.723</td>
<td>47</td>
<td>0.24</td>
</tr>
<tr>
<td>7</td>
<td>72.35</td>
<td>2.413</td>
<td>0.966</td>
<td>382</td>
<td>2.77</td>
<td>1.984</td>
<td>2.727</td>
<td>43</td>
<td>0.19</td>
</tr>
<tr>
<td>8</td>
<td>60.25</td>
<td>2.010</td>
<td>0.906</td>
<td>451</td>
<td>2.77</td>
<td>1.985</td>
<td>2.732</td>
<td>38</td>
<td>0.15</td>
</tr>
<tr>
<td>9</td>
<td>48.15</td>
<td>1.606</td>
<td>0.855</td>
<td>532</td>
<td>2.77</td>
<td>1.986</td>
<td>2.736</td>
<td>34</td>
<td>0.11</td>
</tr>
<tr>
<td>10</td>
<td>36.05</td>
<td>1.202</td>
<td>0.803</td>
<td>668</td>
<td>2.77</td>
<td>1.986</td>
<td>2.740</td>
<td>30</td>
<td>0.08</td>
</tr>
</tbody>
</table>

- **What are the key points here?**
 - The electric field increases with decreasing radius - the inner MITL emits first.
 - $Z_{\text{flow}} \sim Z_{\text{vac}}$ - good insulation
 - The vacuum electron current I_{vac} is a small fraction of the cathode current I_c.
 - The sheath thickness h_{sh} is a small fraction of the gap
- At all locations in the MITL the Z_{flow} characteristics are consistent with super insulated vacuum flow.
The Simulation of the 2-Ω Disk MITL on B-Level Shows a Well-Behaved Low-Loss MITL

- The electron losses are concentrated on the inner MITL elements.
 - The electron loss current density is the key parameter for anode losses per cm2
 - and the potential for raising a problematic anode plasma (400 °C).
 - Optimization of the MITL design to decrease the impedance (gap) of the outer MITL segments are possible.
- The equilibrium Z_{flow} analysis shows that the MITLs always operate with well-insulated electron flow.
 - Specifically, the high value of Z_{flow} and the low vacuum electron current I_{vac}
 show the high quality of the magnetic insulation.
 - Lowering the MITL impedance (smaller gaps) would eventually degrade the Z_{flow}
 performance of the MITL.
- Finally, the final MITL design should be validated with a highly resolved, 2-D (or 3-D) E&M PIC code.
Summary and Conclusions

• We have shown that it is possible to iteratively design MITLs for a 15-TW driver using the SCREAMER circuit code.
 – This SCREAMER calculation takes ~ 1 minute on a standard PC.
• The performance of the 2-Ω disk transmission line shown is excellent.
 – Electron losses are manageable and are lower than found on Z.
• The Z_{flow} MITL model can provide detailed information on the performance of MITLs throughout the pulse.
• 2-D or 3-D E&M PIC codes need only be used to validate the final design.
• The MITL design shown should not be considered optimized. Significant improvements are possible that lead to improved energy coupling to the load.
• SCREAMER (source code, run decks, installation instructions, and the manual) is available for download from http://www.iac.isu.edu/screamer.html and the detailed run deck used here is freely available upon request.