

Implications of the LIGO/Virgo gravitational wave detections for fundamental physics and cosmology.

Ed Porter (APC/CNRS) for the LIGO/Virgo Collaboration 30th Rencontres de Blois, 4-8 June 2018

GW Astronomy

- Advanced Detector Observation Runs
- Fundamental physics using BBH mergers
- Fundamental physics and cosmology using a BNS merger
- Neutron star equation of state

<u>GRAVITATIONAL WAVE</u> <u>ASTRONOMY</u>

GWs and GW detection

THE GRAVITATIONAL WAVE SPECTRUM

Ground-based GW Interferometers

GWs and GW detection

GW Interferometers

 $h_i(t) = h_+(t+\tau_i)F_i^+ + h_\times(t+\tau_i)F_i^\times$

Compact Binary Coalescence

We use matched filtering as a method for both detection and parameter estimation. This method is phase sensitive and requires waveform models from both analytical and numerical relativity.

Abbott et al, PRL 116, 061102 (2016)

ADVANCED DETECTOR DBSERVATION RUNS

www.ligo.caltech.edu/images

<u>GW170817</u>

www.ligo.caltech.edu/images

BINARY BLACK HOLE MERGERS

BINARY PULSARS VS GWS

- Solutions e^{-12} EM observations of binary pulsars give $dP_{orb}/dt \sim 10^{-14}$ 10^{-12}
- Confirm GW luminosity at leading order with excellent precision
- Solution Most relativistic (J0737-3039) has almost constant dP_{orb}/dt
- $v_{orb} / c \sim 2x10^{-3} \text{ and } t_c \sim 85 Myrs$
- \bigcirc GW150419 had $dP_{orb}/dt \sim -0.1$ (30Hz) $\Rightarrow -1$ (132 Hz)
- Just before merger the two BHs orbited each other 75 times/sec
- $\bigvee v_{orb} / c \sim 0.5$ just before merger

PHENOMENOLOGICAL IMR TEST

Look for dominant effect deviations from GR at different PN orders

$$\tilde{h}_{\rm GR}(f) = \tilde{A}(f; \vec{\vartheta}_{\rm GR}) e^{i\Psi(f; \vec{\vartheta}_{\rm GR})}$$
$$\tilde{h}(f) = \tilde{A}(f; \vec{\vartheta}_{\rm GR}) e^{i\left[\Psi(f; \vec{\vartheta}_{\rm GR}) + \delta\Psi(f; \vec{\vartheta}_{\rm GR}, X_{\rm modGR})\right]}$$

GW150914+GW151226+GW170104

MODIFIED DISPERSION

Solution Assume a dispersion relationship of the form

$$E^2 = p^2 c^2 + A p^\alpha c^\alpha, \ \alpha \ge 0$$

modifying the GW group velocity as

$$v_g/c = 1 + (\alpha - 1)AE^{\alpha - 2}/2$$

which changes the phase of the GW

Abbott et al, PRL 118, 221101 (2017)

MASSIVE GRAVITON

Not as good as some static bounds ($\lambda_g > 10^{22}$ km from weak lensing), but still better than solar systems ($\lambda_g > 10^{12}$ km) and binary pulsar tests ($\lambda_g > 10^{10}$ km)

GW POLARISATIONS

- In generic metric theories, GWs can have up to 6 polarisations coming from the 6 independent components of the Riemann tensor.
- Test possible due to inclusion of Advanced Virgo

GW POLARISATIONS

Different polarisations produce a different response at the detector

GW POLARISATIONS

Is this really surprising...?

Abbott et al, PRL 119, 141101 (2017)

GR templates match the phase of the data extremely well!!

Already heavily constrains how much non-tensorial polarisation there can be!

BINARY NEUTRON STAR MERGERS

<u>GW170817</u>

GW sky-error = 28 deg²

Abbott et al, PRL 119, 161101 (2017)

www.ligo.caltech.edu/images

<u>GW170817</u>

Abbott et al, ApJ Letters 848, L13 (2017)

BNS REMNANT

Q:So what is the remnant of the merger?

A:From GWs - we don't know. High frequency signal dominated by photon shot noise

BNS REMNANT

Q: So what is the remnant of the merger?

A: From EM - unclear! Some people believe prompt collapse to BH, others believe in the formation of a transient hypermassive NS

Margalit et al (2017)

HEAVY ELEMENT PRODUCTION

Cutter

Credit: Jennifer Johnson/SDSS

<u>GW170817 & GRB170817A</u>

Abbott et al, ApJ Letters 848, L13 (2017)

SPEED OF GWS

The time delay between the GW and GRB detections over 1.3x10⁸ Lyrs was (N.B. analysis allows for +/- 10 secs)

$$\Delta t = (1.74 \pm 0.05) \, s$$

Defining the fractional difference between the speed of light and GWs as

$$\frac{c_g - c}{c} \approx c \frac{\Delta t}{D_L}$$

We find the following constraint

$$-3 \times 10^{-15} \le \frac{\Delta c}{c} \le 7 \times 10^{-16}$$

Large consequences for cosmological theories

Abbott et al, ApJ Letters 848, L13 (2017)

SPEED OF GWS : IMPLICATIONS

with extension to: Einstein-Aether, Horava gravity, Generalised Proca, TeVeS, massive gravity, bigravity, multi-gravity, MOND-like theories

arXív:1710.05901, 1710.06394, 1710.05893, 1710.05877....

EQUIVALENCE PRINCIPLE

- \Im γ is the PPN parameter parameterising a deviation from Einstein-Maxwell theory
- \bigcirc Conservative bound on $\Delta \gamma = |\gamma_{GW} \gamma_{EM}| \le 2 \frac{\Delta t}{\Delta t_s}$

$$\bigcirc$$
 is $-2.6\times 10^{-7} \leq \Delta\gamma \leq 1.2\times 10^{-6}$

Newer result (S. Boran et al, 1710.06168) using more sophisticated dark matter halo model gives

 $\Delta\gamma \leq 3.9\times 10^{-8}$

implying that MOND-like dark matter emulator theories are ruled out, as the GWs would have arrived 1000 days before the EM emission

HUBBLE'S CONSTANT

HUBBLE'S CONSTANT

HUBBLE'S CONSTANT

N.B. No cosmic distance ladder needed!!

GW astronomy measures luminosity distance directly over cosmic scales

Abbott et al, Nature (2017)

<u>Neutron Star</u> Equation of State

MAXIMUM NS MASS

Özel & Freíre, Ann.Rev.Astron.Astrophys 54, 401 (2017)

BNS Waveforms

For BBH systems, we can use a point particle approximation

- * Inspiral comes from post-Newtonian theory
- Merger comes from numerical relativity
- Ringdown comes from black hole perturbation theory

For BNS systems, the pp-approximation breaks down early in the inspiral

* Need to include tidal effects of matter into the GW phase

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$

 $\Lambda = (2/3)k_2[(c^2/G)(R/m)]^5$

Assume low spins - consistent with NS observations

Abbott et al, PRL 119, 161101 (2017)

30th Rencontres de Blois, 3-8 June, 2018

CINICS

- New analysis beginning at 23 Hz with better modelling
- sky error reduced to 16 deg²
- Bound on Λ_1 Λ_2 is 20% smaller
- 2-sided 90% CI does not contain 0

Abbott et al, arXív:1805.11579 (2018)

- Assume 2 NSs with identical EOS
- 2 EOS methodologies
 - EOS-insensitive :
 - i. $\Lambda_a(\Lambda_s, q)$ ii. $\Lambda - C$
 - Parameterised EOS : *i. Spectral parameterisation*
- 90% Cl for Λ_1 Λ_2 shrinks by ~3

Abbott et al, arXív:1805.11581 (2018)

Now assume spectral parameterisation + minimum NS mass = 1.97 M_{\odot}

$$p(2\rho_{nuc}) = 3.5^{+2.5}_{-1.7} \times 10^{34} \, dyne \, cm^{-2}$$

Abbott et al, arXív:1805.11581 (2018)

Custor

EOS-ins

Spec.Param + min. NS mass

Abbott et al, arXív:1805.11581 (2018)

EOS-ins

Spec.Param + min. NS mass

GW + EM gives much tighter constraint

<u>Conclusions</u>

- 6 BBH mergers (including first triple detection with Advanced Virgo) + First detection of a BNS merger
- \bigcirc Confirmed that BNS mergers \Rightarrow SGRBs \Rightarrow kilonova
- Multi-wavelength follow-up: the era of MMA has truly begun

 $\bigcirc c_g \approx c$

- Consequences for dark energy cosmology and dark matter emulator theories
- Measured Hubble's constant
- No deviations from GR observed!
- GW observations now allow investigation of NS-EOS already a number of models ruled out!
- More to come in 03...

