Precision W and Z physics at colliders

Ilya Kravchenko
University of Nebraska-Lincoln

W and Z boson production

Drell-Yan Z/γ^* and Drell-Yan-like W-boson production

- very clean signature
- observables are sensitive both to QCD and EW sectors of the SM
- theoretically understood to NNLO QCD and NLO EW
- access to proton structure

EW production of W and Z bosons

- vector boson fusion and other diagrams
- handle on triple gauge coupling
- sensitivity to new physics

Multiple W and Z boson production

- vector boson scattering, VV/VVV production, many diagrams
- handle on triple and quadruple gauge coupling
- sensitivity to new physics

Roles of W and Z measurements

Parameters of the SM: EW sector

Parameters of the SM (about 19 total, but 3 define EW):

- EW sector: U(1), SU(2) couplings and the vacuum expectation value (g, g', v) is a more fundamental choice
- other sets are better for various purposes, e.g. (α_{EM}, G_F, M_Z)
- at tree level, simple relations to EW observables:

$$M_W = \frac{v|g|}{2}$$
 $M_Z = \frac{v\sqrt{g^2 + g'^2}}{2}$ $\cos \theta_W = \frac{M_W}{M_Z}$ and others

Main EW observables at LHC and Tevatron:

- mass of W boson (not this talk)
- weak mixing angle θ_W

Fundamental massless bosons W_3 and B mix and yield Z and γ :

$$Z = W_3 \cos \theta_W - B \sin \theta_W$$

$$\gamma = W_3 \sin \theta_W + B \cos \theta_W$$

- M_W and θ_W come from precision W and Z measurements
- same 3 EW parameters govern VVV and VVVV interactions, but in EW W/Z production, VBS, multiboson production the accuracy is lower (but can look for new physics)

QCD tests with W and Z

- Z and W productions are an excellent testing ground for high-order QCD calculations
 - DY process (almost) neatly factorizes with strong interaction affecting only the left side
 - LO is easy, W and Z produced at rest
 - production with small p_T requires treatment of soft gluon emissions with resummation techniques, non-perturbative
 - production with higher p_T is handled with perturbative QCD
 - the state of the art is NNLO QCD and NLO EW calculations
 - this yields O(1%) precision, experiment is often at sub-% level
- Measurements are compared to a variety of theory tools: FEWZ & DYNNLO, ResBos, Powheg & Madgraph, Pythia & Herwig, Alpgen & Sherpa, and others

Proton structure

The knowledge of proton structure is of general interest and necessary for theoretical predictions of about anything studied at hadron colliders.

Proton PDFs: $f(x, Q^2)dx$ shows how many partons of given flavor carry fraction of proton's momentum between x and x + dx.

LHC data expand this knowledge to new kinematic domains and W/Z measurements are among the main inputs.

W/Z at colliders

Tevatron (CDF, D0):

- results still appear with the full dataset
- this talk: the ultimate weak mixing angle Tevatron result

LHC (ATLAS, CMS, LHCb):

- every year more measurements with 7, 8, 13 TeV
- V production diff. x-sections with respect to anything
- EW precision: W mass and weak mixing angle
- EW V production/VBF, multiboson production and VBS, studies of TGC and QGC
- V production with light and heavy jets

In this talk we review most recent precision measurements

Focus of this talk

Discuss recent Z production results from colliders

- differential and inclusive cross sections
- Drell-Yan angular analysis

Most recent W measurements are very interesting, but less related to the spin of this talk

For discussion of W production and a variety of multiboson results, see parallel talks by *Christian Gutschow, Andrew Pilkington, Gabriella Pasztor, Kenneth Long, and Valentina Cairo* from LHC

Studies of the Drell-Yan process

Full picture of DY process kinematics in QCD requires 5 kinematic variables (Born-level): $\sigma(m_{\ell\ell}, y_{\ell\ell}, p_{T,\ell\ell}, \theta, \varphi)$

 dilepton invariant mass $m_{\ell\ell}$ dilepton rapidity $y_{\ell\ell}$ 	Sensitive to proton PDFs
• dilepton transverse momentum $p_{T,\ell,\ell}$	Tests of QCD predictions
• lepton decay angles in dilepton rest frame $ heta$ and $arphi$	Sensitive to the weak mixing angle $ heta_W$

Ultimate experimental result: 5D differential x-section

- approach step by step with more data, better detector understanding, time for technically complex measurements
- inclusive W/Z to single differential to double differential
- new: the first triple differential result from ATLAS

Notable DY x-sections from LHC

Cross section type		7 TeV	8 TeV	13 TeV
Inclusive		ATLAS, CMS, LHCb	ATLAS, CMS, LHCb	ATLAS, CMS, LHCb
Single differential	$m_{\ell\ell}$	ATLAS, CMS	ATLAS, CMS	
	$\mathcal{Y}_{\ell\ell}$	ATLAS, CMS, LHCb	CMS, LHCb	LHCb
	$p_{T,\ell\ell}$ / $arphi^*$	ATLAS, CMS, LHCb	ATLAS, CMS, LHCb	CMS, LHCb
Double differential	$(m_{\ell\ell},y_{\ell\ell})$	CMS	ATLAS, CMS	comir
	$(m_{\ell\ell}, p_{T,\ell\ell})$		ATLAS	e e
	$(p_{T,\ell\ell},y_{\ell\ell})$		ATALS, CMS	mol
Triple differential	$(m_{\ell\ell},y_{\ell\ell}, heta)$		ATLAS	

higher-D x-sections require more data (and time)

New since Blois'17

- multi-variable x-sections for 13 TeV are yet to come
- many of these discussed in detail at Blois'17
- not listed: x-sec w.r.t. N jets and jet quantities

Triple differential DY x-section

ATLAS measures DY production w.r.t. 3 kinematic variables

Unique measurement, 1st of its kind at LHC.

weak mixing angle measurements at hadron colliders usually systematically limited, with leading systematics from PDFs

Image credit: hep-ph:1708.00008

hadron plane

3D DY: the primary result

$d^3\sigma$ measured in fiducial region, corrected to Born-level

- phase space defined by lepton p_T , η , and $m_{\ell\ell}$ ranges
- $d^3\sigma$ up to $|y_{\ell\ell}|<2.4$ with $ee+\mu\mu$ and up to 3.6 with ee

- 3 of 7 mass ranges shown for $|y_{\ell\ell}| < 2.4$ region
- asymmetry between $\pm \cos \theta^*$ (open/closed markers): reflects parity violation in Z-boson decays
- asymmetry is zero and flips sign at $m_{\ell\ell} \sim M_Z$

JHEP 12 (2017) 059

3D DY: derived results

The ATLAS paper also derives integrated results:

- over $y_{\ell\ell}$ and $\cos\theta^*$: $d\sigma/dm_{\ell\ell}$, over $\cos\theta^*$: $d^2\sigma/dm_{\ell\ell}d|y_{\ell\ell}|$
- forward-backward asymmetry in θ^* , which makes most clear the parity violation effects:

$$A_{FB}(m_{\ell\ell}, |y_{\ell\ell}|) = \frac{\int d\sigma(\cos\theta^* > 0) - \int d\sigma(\cos\theta^* < 0)}{\int d\sigma(\cos\theta^* > 0) + \int d\sigma(\cos\theta^* < 0)}$$

JHEP 12 (2017) 059

Sample results from a few regions of phase space:

3D DY: interpretation

- $d^3\sigma$ from ATLAS can be used for proton PDF constraints, θ_W extraction, or both at the same time
- A_{FB} is convenient for θ_W extraction as used in many prior LHC and Tevatron measurements
- ATLAS is now working on inferences, meanwhile:
 - authors do include careful comparison to predictions of Powheg/CT10/Pythia8 boosted to NNLO QCD with FEWZ3.1/MSTW2008NNLO and to NLO EW with G_μ EW scheme, for a particular value of θ_W
 - agreement with measured $d^3\sigma$ is very good, except at some high- $y_{\ell\ell}$ and high- $\cos\theta^*$ cases (could be $p_T^{\ell\ell}$ modeling)
- Interpretation started, e.g. recent report by Duncan Walker & Col. at LHC EW working group with NNLOJET

Forward W and Z production at LHC

LHCb especially suited for high-y forward Drell-Yan studies Among more recent, fiducial results (objects $|\eta| \gtrsim 2$):

- 13 TeV diff. x-sections of Z production $(y_{\ell\ell}, \varphi^*)$ with $ee/\mu\mu$
 - sensitive to proton PDFs, good agreement with theory
- first observation of forward $Z \rightarrow b\bar{b}$ at 8 TeV
 - b-scale calibration, new physics, background to any $b \bar{b} X$ analysis

Diff x-section with respect to ϕ^*

ATLAS counterpart: EPJC 76(5), 1 (2016)

CMS studies DY production w.r.t. φ^* and y at 8 TeV

Definition and physics meaning:

 $\varphi^* = \tan\left(\frac{\pi - \Delta \varphi}{2}\right) \sin\theta_{\eta}^* \text{ where } \cos\theta_{\eta}^* = \tanh(\Delta \eta/2)$

- $arphi^*$ is strongly correlated with $p_T^{\ell\ell}$
- lepton angles-only quantity has better resolution than with p_T^ℓ
- perturbative and non-pert. regimes, difficult for theory to describe

A few % disagreement at φ^* <0.1, order 10% above 0.1 for ResBos, Powheg+Py8, aMC@NLO+PY8. More advanced hard scattering description is needed, but underlying event also important.

\red Drell-Yan angular analysis and $heta_W$

Full DY description: $\sigma(m_{\ell\ell}, y_{\ell\ell}, p_{T,\ell\ell}, \theta^*, \phi^*)$

Angular behavior of leptons can be factored out as:

$$\begin{split} \frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} &= \frac{3}{16\pi}\frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}} \\ & \Big\{(1+\cos^{2}\theta) + \frac{1}{2}\,A_{0}(1-3\cos^{2}\theta) + A_{1}\,\sin2\theta\,\cos\phi \\ & + \frac{1}{2}\,A_{2}\,\sin^{2}\theta\,\cos2\phi + A_{3}\,\sin\theta\,\cos\phi + A_{4}\,\cos\theta \\ & + A_{5}\,\sin^{2}\theta\,\sin2\phi + A_{6}\,\sin2\theta\,\sin\phi + A_{7}\,\sin\theta\,\sin\phi \Big\}. \end{split}$$

where A_i are functions of $m_{\ell\ell}$, $y_{\ell\ell}$, $p_{T,\ell\ell}$ only and correspond to cross sections for particular helicity amplitudes normalized to unpolarized cross section. All hadronic dynamics and EW fundamental parameters dependence is in A_i .

ATLAS experiment performed an impressive measurement of $A_0 - A_7$ reported in the 2016 paper JHEP 08 (2016) 159. CMS also reported $A_0 - A_4$ in PLB750 (2015) 154.

formula ref: arXiv:1606.00689

Parity violation, asymmetry, θ_W

Integrating over ϕ^* we obtain

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}\,\mathrm{d}\cos\theta} = \frac{3}{8}\frac{d\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z}\,\mathrm{d}y^{Z}\,\mathrm{d}m^{Z}}\left\{(1+\cos^{2}\theta) + \frac{1}{2}A_{0}(1-3\cos^{2}\theta) + A_{4}\cos\theta\right\}$$

The term $A_4 \cos \theta^*$ is forward-backward asymmetric and violates parity. It comes from:

- $Z \gamma^*$ axial-vector vector interference
- Z axial-vector vector self-interference (depends on θ_W)

Path to θ_W : measure A_4 or, more commonly, measure A_{FB}

$$A_{FB} = \frac{\sigma(\cos \theta^* > 0) - \sigma(\cos \theta^* < 0)}{\sigma(\cos \theta^* > 0) + \sigma(\cos \theta^* < 0)}$$

$\sin^2 \theta_W$ measurements

Fine points in measurements at colliders:

- A_{FB} depends on $m_{\ell\ell}$, at m_Z solely due to Z self-interference
- A_{FB} depends on quark flavor => sensitivity to PDFs
- at LHC direction of incoming quark is unknown
 - analyses are done in $(m_{\ell\ell},y_{\ell\ell})$ space
 - dilepton system direction on average reflects valence quark direction
- A_{FB} is enhanced by event weighting

Radiative corrections

- at LO EW, $\sin^2 \theta_W = 1 M_W/M_Z$
- beyond: $\sin^2 \theta_{eff} = \sin^2 \theta_W (1 + \Delta r)$
- Δr are flavor dependent
- at colliders, measure $\sin^2 \theta_{eff}^{lep}$

Recent $\sin^2 \theta_{eff}^{lep}$ from CMS: A_{FB}

CMS measures $\sin^2 \theta_{eff}^{lep}$ with 8 TeV dataset

- A_{FB} computed in 72 $(m_{\ell\ell}, Y_{\ell\ell})$ bins
- angular weighting is applied to candidates
- A_{FB} fit with templates generated with different $\sin^2 heta_{eff}^{lep}$

$\sin^2 \theta_{eff}^{lep}$ from CMS: systematics

Leading systematic uncertainty: PDF

- $\sin^2 \theta_{eff}^{lep}$ max sensitivity: $m_{\ell\ell}{\sim}m_Z$
- PDF uncertainty is max away from m_Z
- reweight PDF effect with χ^2_{min} of A_{FB} fit

Central value and PDF uncertainty:

		•
Channel	without constraining PDFs	with constraining PDFs
Muon	0.23125 ± 0.00054	0.23125 ± 0.00032
Electron	0.23054 ± 0.00064	0.23056 ± 0.00045
Combined	0.23102 ± 0.00057	0.23101 ± 0.00030

PDF uncertainty reduced by x2

Final result:

$$\begin{split} \sin^2\theta_{\rm eff}^{\rm lept} &= 0.23101 \pm 0.00036 (stat) \pm 0.00018 (syst) \\ &\pm 0.00016 (theory) \pm 0.00030 (pdf) \end{split}$$

Recent $\sin^2 \theta_{eff}^{lep}$ from colliders

Over last year, Tevatron released ultimate $\sin^2 \theta_{eff}^{lep}$ from

full data. CMS also had new result.

See Breese Quinn's talk for more!

CMS PAS SMP-16-007

FERMILAB-PUB-18-015-E

- hadron collider measurements approach e^+e^- level
- Tevatron also infers $\sin^2 \theta_W$ and M_W (as a SM test)

Summary

- Precision W and Z studies at LHC are in full swing, with occasional Tevatron results appearing
- Primary focus areas remain:
 - precision measurements of EW parameters
 - SM tests at NNLO QCD, NLO EW level and beyond
 - differential x-sections for proton PDFs at high- Q^2 and low-x
- The 13 TeV LHC dataset is yet to be fully analyzed (LHC will keep running until end of this year), most 13 TeV precision measurements are yet to come
- Future LHC runs and HL-LHC era will take W/Z
 precision measurements to the next level with x100 in
 sample sizes.

EXTRA MATERIAL

Collins-Soper frame

Collins-Soper frame definition:

- in rest frame of $\ell\ell$
- Z axis bisects directions of incoming protons $\pm (\vec{p}_1 \vec{p}_2)$
- Z direction is $(\vec{p}_1-\vec{p}_2)$ at Tevatron, or of the $\ell\ell$ system in the lab (LHC)
- X axis is in the hadron plane
- X axis points to $-(\vec{p}_1 + \vec{p}_2)$
- Y axis complements to right-handed Cartesian system

C-S frame minimizes transverse *z* motion of partons

For DY, θ^* and φ^* are spherical system angles of negative lepton

3D DY cross section from ATLAS

Complete plots, with ratio panes, mentioned earlier in the talk. From ATLAS's JHEP 12 (2017) 059.

EW Z production

Non-DY Z production: "EW" is one interesting mechanism

- VBF and VBS understanding important for Higgs measurements and new physics searches
- EW Z production is tiny, but can be disentangled from "QCD" kinematically
- handles: high dijet mass, large η separation

ATLAS and CMS measure inclusive x-sec at 13 TeV

good agreement with SM predictions

ATLAS: Phys. Lett. B 775 (2017) 206 CMS: CMS-SMP-16-018 (sub to EPJ)

See Andy Pilkington's talk for in-depth discussuion!

Both ATLAS and CMS published EW $pp \rightarrow Zjj$ 8 TeV x-sections a few years back.