

Point-source searches with IceCube

Stéphanie Bron Rencontres de Blois

June 06, 2018

Cosmic ray spectrum

Sources of cosmic rays are unknown

How to find cosmic ray sources?

- Cosmic rays (= nuclei) are deflected by magnetic fields
- Gamma rays are absorbed
- <u>Neutrinos</u> travel undeflected, only candidate messenger to point back at sources

IceCube experiment

- Completed in 2010
- 1 km³ volume
- 86 strings
- 125 m string spacing
- 5160 PMTs
- 17 m vertical spacing

Neutrino events in the detector

Data (\sim 500 TeV)

- ullet angular resolution $\sim 1^\circ$
- factor of \approx 2 energy resolution

Data (Ernie, 1.14 PeV)

- $\bullet\,$ angular resolution $\sim\,10^\circ\,$
- \pm 10-15% deposited energy resolution

- Sindation
- $\bullet \ \ none \ \ observed \ \ yet$
- au decay length = 50m/PeV

Background and signal in IceCube

- $E_{
 u} > 100 \; {
 m GeV} \; (10 \; {
 m GeV} \; {
 m DeepCore})$
- μ rate: 2.5 kHz u rate \sim mHz
- \sim 200'000 up-going atmospheric $\nu/{\rm year}$
- $\sim O(10)$ astrophysical ν /year that we can isolate (much more at lower energy)

Isolating astrophysical signal

Latest results of HESE (6 years of IceCube data)

Result of the fit:

• $\phi_0 = 2.46 \pm 0.8 [10^{-8} \text{ GeV cm}^{-2}\text{s}^{-1}\text{sr}^{-1}]$ • $\gamma_{astro} = 2.92^{+0.33}_{-0.29}$

- Excess in neutrinos first measured in 2013 (see Science 342, 1242856 (2013))
- At ICRC 2017: 80 events observed
- $15.6^{+11.4}_{-3.9}$ atmospheric neutrinos
- 25.2 ± 7.3 atmospheric muons
- can't discriminate between unbroken/broken power law

There is an astrophysical flux...

So what produces it?

Extragalactic source candidates

\leq 1% of astrophysical flux can come from GRBs

\leq 27% of astrophysical flux can come from blazars

- Neutrino emission from obvious source candidates well constrained
- But there are lots of sources we don't know well or not observed (too far away, GRBs with choked jets, ...)

We can use hypothesis that signal is clustered while background is isotropic to look in lower energy IceCube data and to find out sources

Method for point-source searches in IceCube

Point-source analyses

	Time independent	Time dependent
Untriggered	all-sky scan	all-sky flare analysis
Triggered	-	gamma-ray lightcurve analysis

Unbinned likelihood analysis method https://doi.org/10.1016/j.astropartphys.2008.02.007

Dec

Time independent: All-sky scan

- Hypothesis: neutrino source = clustering of events in the sky
- tracks with $E_{
 u} > 1$ TeV

Signal PDF: time integrated

- $\triangleright \quad S_i = P_i^{sig}(\sigma_i, \vec{r_i} | \vec{r}_{src}) \cdot \epsilon_i^{sig}(E_i, \delta_i | \gamma)$
- ▶ 2 free params: n_s , γ

Time independent: All-sky scan

Hemisphere	North	South		
n _s	27.22	15.54		
γ	1.95	2.84		
p-value	44%	39%		

\rightarrow no significant spatial clustering found!

• Coming soon: improved sample being finalized, 10 years of tracks will be used for an update

Time dependent: All-sky gaussian flare analysis

Time

- Hypothesis: time clustering of events at time T_0 around a Gaussian with width σ_T (Astropart.Phys. 33 (2010) 175-181)
- Add time PDF, T_i^{sig}

• 4 free params: n_s , γ , T_0 , σ_T

 \rightarrow no significant time clustering found!

Coming soon: update of analysis covering 2015-2017

Time dependent: Gamma-ray lightcurve analysis

- Hypothesis: time clustering of events in coincidence with gamma-ray flare of selected transient sources from Fermi-LAT
- E_γ range: \sim 100 MeV-300 GeV
- Add time PDF, T_i^{sig}

Signal PDF: time dependent

- $\triangleright \quad S_i = P_i^{sig}(\sigma_i, \vec{r_i} | \vec{r_{src}}) \cdot \epsilon_i^{sig}(E_i, \delta_i | \gamma) \cdot T_i^{sig}$
- 4 free params: n_s , γ , threshold, lag

\rightarrow no significant correlation found!

 \rightarrow p-value: 30.18%

Monthly gamma-ray lightcurve analysis

- Same analysis on shorter time scale: 1 month
- Flare selection currently checked \rightarrow Bayesian blocks method

(http://stacks.iop.org/0004-637X/764/i=2/a=167)

 Automatic analysis from source selection to results on webpage

Time-Dependent Analysis	 MDJ 56150.0 to 5 MDJ 56180.0 to 5 MDJ 5620.0 to 5 	Analysis Results • M0 56150 to 562100 (2012 06-11 to 2012-10-10) • M0 561000 to 562000 (2012 06-10 to 2012-11-00) • M0 561000 to 562700 (2012 06-10 to 2012-12-00) • M0 56100 to 562700 (2012 06-10 to 2012-12-00)			win
Navigation	Name *	Type at	Dec l'1 et	BA I'L et	
The Documentation	0235+164	2	16.616	39.662	
Analysis Results	0827+243	2		127.49	
 MDJ 56150.0 to 56210.0 	0FGL 32910.2-5044	question-cuy source	-30.743	137.568	
(2012-08-11 to 2012-10-10) • MDI 56380 0 to 56240 0	0FGLJ1641.4+3939	Quasar	39.665	250.355	
(2012-09-10 to 2012-11-09)	1ES 1959+650	BL Lac	45.149	303.0	
 MDJ 56210.0 to 56270.0 	185 2322-449	BL Lac	-10.68	351.186	
(2012-10-10 to 2012-12-08)	1ES 2344+514	BL Lac	\$1.705	356.77	⊢
Onick search	1H 0323+342	Seyfert 1 Galaxy	34.179	51.172	
4	30.120	Seyfert 1 Galaxy	\$.354	68.296	
0.8	30.273	Seyfert 1 Galaxy	2.052	187.278	
Enter nearth terms or a module, class or function name	30.279	Quasar	-5.789	194.047	1
	30.446	BL Loc	-4.95	336.447	
	30454.3	Osasar	16.148	343.491	

Analysis recently tested on an huge flare of blazar 3C 279 (11-days analysis)

10 10

 10^{4} 10⁵ 10^{6}

10

10 105 106 10^{7} 108

 $E_{..}^{max}/E_{..}^{min}$

Stéphanie Bron

107 June 06, 2018 14 / 17

 $E_{\cdot}^{max}/E_{\cdot}^{min}$

108

IceCube alerts to optical, X-ray and gamma-ray telescopes

The IceCube Realtime Alert System. Astroparticle Physics. 92. 10.1016/j.astropartphys.2017.05.002 See talk from Konstancja Satalecka on Friday 9am

Stéphanie Bron

An interesting IceCube alert

IceCube-170922A: Extremely High Energy event detected by IceCube on 22nd September 2017 \rightarrow EHE alert sent to AMON via GCN

(https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3?)

Date: 22 Sep, 2017 E proxy of about 120 TeV Time: 20:54:30.43 UTC RA: 77.43 deg (-0.80 deg/+1.30 deg 90% PSF containment) J2000 Dec: 5.72 deg (-0.40 deg/+0.70 deg 90% PSF containment) J2000

• Paper in preparation

Fermi-LAT reports blazar TXS 0506+056 in flaring

Summary and outlook

- Diffuse astrophysical flux detected with more than 7σ significance
- Searches for sources
 - scanning the whole sky and looking for spatial clustering
 - scanning the whole sky and looking for spatial and time clustering
 - correlations in space and time with gamma rays
- Searches for sources targeting shorter time scales:
 - monthly correlation with gamma-rays
 - real time alerts send IceCube events details to a global telescope network for follow-up
- A brilliant mutli-messenger program is now active with IceCube. Stay tuned for interesting results coming soon!

Additional slides

Gravitational waves

Image credit: www.ligo.caltech.edu/images

 \rightarrow neutrinos may be emitted if the merger happens in a sufficiently baryon-dense environment and a black hole + accretion disk system is formed

- Neutrino correlation searches with IceCube and ANTARES: Phys. Rev. D93, 122010 (2016), Phys. Rev. D 96, 022005 (2017)
- No significant neutrino detection in correlation with GW

Search for correlation with GW170817

The Astrophysical Journal Letters, vol 850, 2, (2017)

search for coincident neutrinos using a time window of $\pm 500~{\rm s}$ around GW and 14 days after GW

IceCube results:

- 6 ν candidate events \rightarrow no directional correlation, consistent with atmospheric background
- 0 HESE event

Antares results:

• 0 ν candidate events within \pm 500 s, 0 spatially coincident event in 14 days search

Pierre Auger results:

• 0 ν candidate events within $\pm 500~{\rm s}$ or in 14 days search

 \rightarrow consistent with our expectations from a typical GRB observed off-axis, or with a low-luminosity GRB

Correlation with ultrahigh-energy cosmic rays

- Unbinned likelihood analysis
- Test correlation between neutrinos and ultrahigh-energy cosmic rays

Data sample				
cosmic rays	Telescope array Pierre Auger	$E_{CR} > 50 {\rm EeV}$		
neutrinos	IceCube	$E_{\mu} > 200 \; { m TeV}$		

Tested deflection hypotheses: $\theta = [3^{\circ}, 6^{\circ}] \cdot 100 \text{ EeV}/E_{CR}$ $\rightarrow \text{ most significant result}$

Correlation with ultrahigh-energy cosmic rays

x, + = neutrinos IceCube

- previous analysis: $\sim 3\sigma$
- This analysis = addition of 2 years of IceCube data: $\sim 2\sigma$

 \rightarrow no significant correlation found!

Galactic plane emission template

How much from the diffuse neutrino flux we observe comes from interaction of cosmic rays with the **interstellar gas of our Galaxy**?

Astrophys.J. 849 (2017) 67

Analysis method:

- take models of gamma-ray emission: KRA-γ (50 PeV cutoff) model
- search for anisotropy corresponding to model in neutrino arrival directions

< 14% of astrophysical flux can come from Galactic plane

Paper in preparation: New joint Galactic plane analysis between IceCube and Antares, using KRA γ template, 5 PeV cosmic-ray cutoff, expect better limits

Spectral index γ_{astro}

90% confidence level regions for the value of γ_{astro}

 \rightarrow tension : could indicate a broken power law

Analysis	$\phi_0 \ [10^{-8} \text{ GeV cm}^{-2} \text{s}^{-1} \text{sr}^{-1}]$	γ_{astro}
HESE-6yrs	2.46 ± 0.8	$2.92^{+0.33}_{-0.29}$
Tracks-8yrs	$1.01^{+0.25}_{-0.23}$	$2.19 {\pm} 0.10$
Cascades-4yrs	$1.57_{-0.22}^{+0.23}$	$2.48 {\pm} 0.08$

Looking for sources with HESE

- events directions from HESE sample put on a skymap
- neutrino source = clustering of events in the sky
- maximum-likelihood method with two free parameters: number of source events, spectral index

No significant result: p-values of 44% and 77% for the shower-only and the all-events test \rightarrow constraint on energy is very strict: too few events

IceCube-Gen2

- 10 km³
- 1 order of magnitude increase in neutrino detection rates → statistically significant samples in the PeV to EeV range

PINGU

main goal: distinguish between the normal and inverted NMH \rightarrow 3σ significance with \sim 3.5 years of data

Stéphanie Bron