

Results from the ARIS experiment

Anyssa Navrer-Agasson

30th Rencontres de Blois - June 5, 2018

Direct dark matter search with liquid argon

Uncertainties on the response of LAr to nuclear and electronic recoils are a major source of systematics

S2

Energy scale in LAr

Need to determine experimentally :

- **Photoelectron yield** of electronic recoils as a function of energy
- Effect of electric field on scintillation output
- Relative scintillation efficiency (L_{eff}) between electronic and nuclear recoils

Measurements methods

LICORNE beam kinematics

6

The ARIS setup

Small scale TPC ⇒ single scatter events

TPC:

- → ~0.5 kg of LAr
- ➡ PTFE reflector with TPB coated surface
- → 7 Hamamatsu 1" PMTs on top, one 3" PMT on bottom
- Single phase mode (high statistics)

8 neutron detectors:

- NE213 liquid scintillator
- ➡ 20 cm diameter
- ➡ 5 cm height
- Signal pulse shape discrimination available

Probed recoil energies

	Scattering	MC Determined
	Angle [deg]	Mean NR Energy [keV]
A0	25.5	7.14
A1	35.8	13.72
A2	41.2	17.78
A3	45.7	21.69
A4	64.2	40.45
A5	85.5	65.37
A6	113.2	98.14
A7	133.1	117.78

ARIS experiment : data taking at Licorne

12 days of data taking in October 2016

30th Rencontres de Blois

TOF distributions

Data selection

4 populations

- Neutrons from ¹H(⁷Li,n)⁷Be reaction
- Compton scattered beam-correlated γ from 7Li* de-excitation
- Neutrons from fusion evaporation reactions
- Accidental coincidences between a neutron in the TPC and a γ in the ND

Cuts on TOF, ND charge and ND PSD

Exploitable samples of both ER and NR with well defined energies

Light yield linearity at null field

Sources

- ➡¹³³Ba, ²⁴¹Am, ²²Na
- 478 keV γ from 7Li* de-excitation provide a pure sample of Compton single scatters

30th Rencontres de Blois

Recombination probability in LAr: ER

extracted from ER data

$$\left(\alpha = \frac{N_{ex}}{N_i} = 0.21 \text{ for ER} \right)$$

Comparison to prediction of

Fit by Doke-Birks model (tuned to account for field dependance) 。1.1 ສ ຜ S1 / 0.9 0.8 0.7 0.6 50 V/cmCompton e 0.5 ²⁴¹Am 100 V/cm0.4 ▼ ¹³³Ba -200 V/cm0.3 500 V/cm 0.2^L 50 100 150 200 250 300 Energy [keV_{ee}]

Doke-Birks' R goes to 1 at low energies while data shows that R should decrease

Recombination probability in LAr: NR

Fit S1_{null}/S1_{null_field} data for NR with Thomas-Imel model (assuming $\alpha = 1$)

Tuned model compared to S2 at 6.7 keV data from Joshi et al. as a cross check

Thomas-Imel model reproduces both NR S1 and S2 (6.7 keV) at different drift fields

Fitted NR spectra

Data is **background subtracted**. Fit performed with **L**_{eff} **as free parameter**

30th Rencontres de Blois

June 5, 2018

Quenching of NR

Most precise measurement of L_{eff} and lowest energy point

Good agreement with PARIS model up to 60 keVnr

Ionization yield in DarkSide-50

\$1_{DS50} (Enr) =

Conclusions

- Scintillation yield :
 - · Linearity demonstrated within 1.6% in the [40, 511] keV_{ee} range
- Measure of L_{eff} in the [7, 120] keV_{nr} range:
 - Most accurate and lowest energy measure of L_{eff}
- Tuning of parametrization of recombination probability for ERs and NRs at different drift fields
- Included in DarkSide-50 low mass WIMP search to extract the electron yield at low energies

Backup slides

ER/NR discrimination

Energy scale calibration

30th Rencontres de Blois

TPC calibration

Response map to model detector response

Light yield in LAr

Light yield extracted using data from ²⁴¹Am and ¹³³Ba sources

Combined average light-yield: 6.35 ± 0.05 pe / keV

Scattering angle/ recoil energy relation

$$T_2' = T_1 \frac{2A}{(1+A)^2} (1 - \cos \theta_n)$$

LAr TPC backgrounds

