

Rencontres de Blois : 3rd-8th June 2018

6/6/2018

Overview

- The ultra-rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay.
- The NA62 experiment at CERN.
- Results of analysis of 2016 data :
 - Selection.
 - Background rejection.
 - Single Event Sensitivity (SES).
 - Background studies.
 - Result.
- Outlook for NA62.

The ultra-rare $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ decay

 $\delta \mathbf{P}_{c,u}$

 $P_c^{SD}(X)$

 X_t

other

0.5%

2.9%

6.7%

Uncertainty budget

[Buras et al. : JHEP 1511 (2015) 033]

- FCNC loop process: $\overline{s} \rightarrow \overline{d}$ transition, dramatic CKM suppression.
- Theoretically clean:
 - Dominated by short distance effects.
 - Hadronic matrix elements precisely known from K_{l3} decays.
- Precise theoretical prediction: [Buras et al. : JHEP 1511 (2015) 033]

 $\therefore Br(K^+ \to \pi^+ \nu \bar{\nu}) = (8.38 \pm 0.30) \times 10^{-11} \left[\frac{|V_{cb}|}{40.7 \times 10^{-3}} \right]^{2.8} \left[\frac{\gamma}{73.2^{\circ}} \right]^{0.74} = (8.4 \pm 1.0) \times 10^{-11}$

- Potential sensitivity to NP.
- NA62 primary goal: Precise experimental measurement of $Br(K^+ \to \pi^+ \nu \bar{\nu})$.

 $|V_{cb}|$

9.9%

NP Prospects for $K^+ \to \pi^+ \nu \bar{\nu}$ decay

- Randall-Sundrum (warped extra dimension) with Custodial protection [Blanke et al. JHEP 0903:108 (2009)]
- Supersymmetry (MSSM) [Blažek & Maták Int.J.Mod.Phys. A29 (2014)] [Isidori et al JHEP 0608:064 (2006)]
- Simplified Z, Z' models [Buras et al. JHEP11,166 (2015)]
- Littlest Higgs model with T-parity [Blanke et al. Eur.Phys.J. C76 (2016) no.4, 182]
- Lepton Flavour Universality Violation (LFUV) [Bordone et al. Eur. Phys. J. C (2017) 77:618]
- Previous constrains on the models from: $K^0 \overline{K^0}$ mixing, rare K and B decays, CKM matrix element measurements, LFUV anomalies, direct searches for NP.

Experimental Context : $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ Measurement History of $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ Measurement

The NA62 Experiment at CERN

~ 200 collaborators from ~ 30 institutions :

Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax, Ferrara, Florence, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, Sofia, TRIUMF, Turin, Vancouver (UBC).

NA62 : K-->pi nu nu

Joel Swallow

BIRMINGHAM

- **Primary goal:** Measurement of $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu})$.
- **New Technique:** *K* decay-in-flight.
- Requirements:
 - $10^{13} K^+$ decays

- Signal acceptance O(10%)
- $\mathcal{O}(10^{12})$ Background rejection

Broader Physics programme : [SPSC NA62 (2018)]

- Rare K^+ decays (e.g $K^+ \rightarrow \pi^+ \mu^+ \mu^-$).
- LNV/LFV K^+ decays (e.g $K^+ \to \pi^- l_2^+ l_1^+$).
- Exotics (e.g HNL : [PhysLett.B,778 (2018)]).

Data Taking :

- 2015 Commissioning run.
- 2016 Commissioning + Physics run (30 days) [this talk].
- 2017 Physics run (160 days).
- 2018 Physics run in progress (217 days scheduled). $_6$

The NA62 Strategy

NA62 Keystones

- $\mathcal{O}(100)$ ps timing between sub-detectors.
- $\mathcal{O}(10^4)$ background suppression from kinematics.
- $> 10^7$ muon rejection.
- > 10⁷ rejection of π^0 from $K^+ \rightarrow \pi^+ \pi^0$.

Process	Branching Ratio [PDG]	
$K^+ o \mu^+ \nu_\mu$	0.6356 ± 0.0011	
$K^+ o \pi^+ \pi^0$	π^0 0.2067 ± 0.0008	
$K^+ \to \pi^+ \pi^+ \pi^-$	0.05583 ± 0.00024	
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$(4.247 \pm 0.024) \times 10^{-5}$	
$K^+ o \pi^+ u \overline{ u}$	[SM] $(8.4 \pm 1.0) \times 10^{-11}$	

- Kinematic suppression: restrict to R1 & R2 with $15 < p_{\pi^+} < 35$ GeV.
- Muon rejection: PID (Cherenkov detectors + Calorimeters)
- π^0 rejection: photon vetos.

UNIVERSITY

Joel Swallow

Analysis Procedure

Data Sample

- ~4 weeks of 2016 data, $(1.21 \pm 0.02) \times 10^{11} K^+$ decays in fiducial volume.
- Dedicated $\pi \nu \overline{\nu}$ trigger stream + minimum bias Control trigger (downscaled). <u>Analysis</u>
- 1. Selection
 - Blind analysis procedure: signal and control regions blinded for whole analysis.
- 2. Determination of the Singe Event Sensitivity (SES)
- 3. Estimation and validation of expected background
 - $K^+ \to \pi^+ \pi^0(\gamma)$, $K^+ \to \mu^+ \nu_\mu(\gamma)$, $K^+ \to \pi^+ \pi^+ \pi^-$, $K^+ \to \pi^+ \pi^- e^+ \nu_e$, upstream.
- 4. Un-blinding control and signal regions and results.

Signal Selection

Selection Sketch (cut-based analysis)

- Single downstream track.
- Match downstream track to a K^+ upstream.
- ID downstream track as a π^+ .
 - Photon rejection.
 - Reject additional activity.
- 10³ Signal Region Definition
 - $15 < p_{\pi^+} < 35 \text{ GeV}$

• R1 & R2 in
$$m_{miss}^2 = (P_K - P_\pi)^2$$

- 3 definitions (Protects against mis-reconstruction):
 - $m_{miss}^2(STRAW, GTK)$
 - $m_{miss}^2(RICH, GTK)$
 - $m_{miss}^2(STRAW, Beam)$

Performance (2016 data)

PID : $\varepsilon_{\pi^+}=64\%$, $\varepsilon_{\mu^+}=1{ imes}10^{-8}$

•
$$\pi^0$$
 rejection : $\varepsilon_{\pi^0} = 3 \times 10^{-8}$

- $\sigma(m_{miss}^2) = 1 \times 10^{-3} \, \text{GeV}^2$
- $\sigma(t) = \mathcal{O}(100 \text{ ps})$

NA62 🛕

Single Event Sensitivity (SES)

Systematics Breakdown

Source	$\delta SES~(10^{-10})$	
Random veto	± 0.17	
Definition of $\pi^+\pi^0$ region	± 0.10	
$A_{\pi u u}$	± 0.09	
N_K	± 0.05	
Trigger efficiency	± 0.04	
Extra activity	± 0.02	
Pileup simulation	± 0.02	
Momentum spectrum	± 0.01	
Total	± 0.24	

- Signal Acceptance: 4% (3% R2, 1% R1).
- Normalisation: $K^+ \rightarrow \pi^+ \pi^0$ from control trigger. Acceptance: 10%, $N_K = (1.21 \pm 0.02) \times 10^{11}$.

 $SES = (3.15 \pm 0.01(stat) \pm 0.24(syst)) \times 10^{-10}$

NA62 : K-->pi nu nu

Background Expectation (1) : $K^+ \rightarrow \pi^+ \pi^0(\gamma)$

- Expected # of background events in signal regions, from data driven studies of the kinematic tails.
- From MC: $\pi^0 \gamma$ rejection is 30x better than π^0 rejection.

	$K^+ o \pi^+ \pi^0$	$K^+ ightarrow \pi^+ \pi^0 \gamma$
R1	$0.022 \pm 0.004(stat) \pm 0.002(syst)$	0
R2	$0.037 \pm 0.006(stat) \pm 0.003(syst)$	$0.005 \pm 0.005(syst)$

NA62 \Lambda

Background Expectation (2) : $K^+ \rightarrow \mu^+ \nu_{\mu}(\gamma)$

32

34

NA62 \Lambda

Background Expectation (3) : $K^+ \rightarrow \pi^+ \pi^+ \pi^-$

- Kinematic tail fraction determined from a control sample of $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ events selected by tagging a $\pi^+ \pi^-$ pair.
- Corrected for biases induced by the control sample selection using MC studies.
- Expectation (R1+R2) :

 $N_{\pi\pi\pi}^{exp} = 0.002 \pm 0.001(stat) \pm 0.002(syst)$

Background Expectation (4) : $K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$

MC simulation $K^+
ightarrow \pi^+ \pi^- e^+
u_e$ Validation sample 1

• Background estimated from study of $\sim 4 \times 10^8$ MC $K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$ events, (R1+R2):

 $N_{\pi\pi ev}^{exp} = 0.018^{+0.024}_{-0.017}(stat) \pm 0.009(syst)$

NA62 : K-->pi nu nu

Background Expectation (5) : Upstream Background

- Upstream background sources:
 - Decays along beamline.
 - Interactions with beam spectrometer material (GTK3) producing π^+ .
 - Track mismatching.
- Effective $K^+ \pi^+$ matching procedure minimises effect.
- Data-driven estimation of remaining background (R1+R2).

 $N_{UpstreamBg}^{exp} = 0.050_{-0.030}^{+0.090}$

Expectation Summary

	Expected # of Events in Signal Regions (R1+R2)	
Signal : $K^+ ightarrow \pi^+ \nu \overline{ u}$ (SM)	$0.267 \pm 0.001(stat) \pm 0.020(syst) \pm 0.032(ext)$	
Total Background	$0.15 \pm 0.09(stat) \pm 0.01(syst)$	

Background breakdown:

Background Process	Expected # of Events in Signal Regions (R1+R2)		
$K^+ ightarrow \pi^+ \pi^0(\gamma)$ IB	$0.064 \pm 0.007(stat) \pm 0.006(syst)$		
$K^+ ightarrow \mu^+ \nu_\mu (\gamma) $ IB	$0.020 \pm 0.003(stat) \pm 0.003(syst)$		
$K^+ o \pi^+ \pi^+ \pi^-$	$0.002 \pm 0.001(stat) \pm 0.002(syst)$		
$K^+ \to \pi^+ \pi^- e^+ \nu_e$	$0.018^{+0.024}_{-0.017}(stat) \pm 0.009(syst)$		
Upstream	$0.050^{+0.090}_{-0.030}(stat)$		

Result

BIRMINGHAM

Unblinding Control Regions

Result

0.12

Unblinding Signal Regions RICH Display For Candidate Event

NA62 : K-->pi nu nu

Preliminary Results [Paper in preparation]

$SES = (3.15 \pm 0.01(stat) \pm 0.24(syst)) \times 10^{-10}$

	Expected # of Events in Signal Regions (R1+R2)	
Signal : $K^+ \to \pi^+ \nu \overline{\nu}$ (SM)	$0.267 \pm 0.001(stat) \pm 0.020(syst) \pm 0.032(ext)$	
Total Background	$0.15 \pm 0.09(stat) \pm 0.01(syst)$	

Observed : 1 event in R2.

 $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (28^{+44}_{-23}) \times 10^{-11} @ 68\% CL$ Results using Rolke-Lopez method : $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 11 \times 10^{-10} @ 90\% CL$ $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @ 95\% CL$

Compatible with SM : $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$ [Buras et al. : JHEP 1511 (2015) 033] And BNL experimental result : $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (17.3^{+11.5}_{-10.5}) \times 10^{-11}_{-10.5}$

[Artamonov et al. PhysRevLett.101.191802 (2008)]

UNIVERSITYOF

Joel Swallow

 \bullet K^+ Decay at rest

Conclusions and Outlook for NA62

- Preliminary Results [Paper in preparation]
 - 1 candidate event in 2016 data (~ 4 weeks of data taking).
 - Preliminary result : $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu}) < 11 \times 10^{-10} @ 90\% CL$ compatible with SM and previous experiment.
- The new NA62 K^+ decay-in-flight technique works.
- Good quality data taken throughout 2017
 - ~20 times more data than presented here.
 - Expected reduction of upstream background, improved reconstruction efficiency and studies to improve signal acceptance.
- 218 days of running in progress in 2018.
- Expect ~20 SM $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ events before LS2.

Supplemental

Joel Swallow

NA62 : K-->pi nu nu

$$K^{+} \rightarrow \pi^{+} \nu \bar{\nu} \text{ Branching Ratio} \quad \text{Buras et al.: JHEP 1511 (2015) 033}$$

$$Br(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}) = \kappa_{+} (1 + \Delta_{EM}) \left[\left(\frac{\text{Im}(\lambda_{t})}{\lambda^{5}} X(x_{t}) \right)^{2} + \left(\frac{\text{Re}(\lambda_{c})}{\lambda} P_{c}(X) + \frac{\text{Re}(\lambda_{c})}{\lambda^{5}} X(x_{t}) \right)^{2} \right]$$
Buras method A : using experimentally driven inputs from tree-level measurements of $|V_{us}|, |V_{cb}|, |V_{ub}|$ and γ :

$$Br(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}) = (8.38 \pm 0.30) \times 10^{-11} \left[\frac{|V_{cb}|}{40.7 \times 10^{-3}} \right]^{2.8} \left[\frac{\gamma}{73.2^{\circ}} \right]^{0.74}$$

$$|V_{ub}|_{avg} = (3.88 \pm 0.29) \times 10^{-3} Re(\lambda_{t}) \approx |V_{ub}| |V_{cb}| \cos(\gamma(1 - 2\lambda^{2})) + (|V_{ub}|^{2} - |V_{cb}|^{2})\lambda(1 - \frac{\lambda^{2}}{2})$$

$$Im(\lambda_{t}) \approx |V_{ub}| |V_{cb}| \sin(\gamma)$$

$$Re(\lambda_{c}) \approx -\lambda(1 - \frac{\lambda^{2}}{2})$$

$$Uncertainty budget$$

$$\therefore Br(K^{+} \rightarrow \pi^{+} \nu \bar{\nu}) = (8.38 \pm 0.30) \times 10^{-11} \left[\frac{|V_{cb}|}{40.7 \times 10^{-3}} \right]^{2.8} \left[\frac{\gamma}{73.2^{\circ}} \right]^{0.74} = (8.4 \pm 1.0) \times 10^{-11}$$

Buras method B : experimental measurements augmented with averaging – assume SM and use ε_K , ΔM_s , ΔM_D and $S_{\psi K_s}$

 $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (9.11 \pm 0.72) \times 10^{-11}$

Single Event Sensitivity Definition

- Signal : $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ from $\pi \nu \bar{\nu}$ trigger.
- Normalisation : $K^+ \rightarrow \pi^+ \pi^0$ from control (Min. bias) trigger.
 - Use same $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ selection but multiplicity rejection is not applied and m_{miss}^2 cuts are modified.

$$N_K = \frac{N_{\pi\pi}D}{A_{\pi\pi}Br_{\pi\pi}}$$

 N_K : Number of K^+ decays (in fiducial volume). $N_{\pi\pi} \sim 6 \times 10^6$: number of $K^+ \rightarrow \pi^+ \pi^0$ events selected. $A_{\mu\mu} \sim 0.10$: acceptance for $K^+ \rightarrow \pi^+ \pi^0$ normalisation channel. D = 400: control trigger downscaling factor.

$$N_K = (1.21 \pm 0.02) \times 10^{11}$$

 $SES = \frac{1}{N_K \sum_j \left(A^j_{\pi \nu \overline{\nu}} \varepsilon^j_{RV} \varepsilon^j_{trig} \right)}$

 $A_{\pi\nu\overline{\nu}} \sim 0.04$: Signal acceptance. $\varepsilon_{RV} \sim 0.76$: Random veto efficiency. $\varepsilon_{trig} \sim 0.87$: $\pi\nu\overline{\nu}$ Trigger efficiency. All in 4 momentum bins, *j*,(5 GeV width, 15 – 35 GeV)

 $SES = (3.15 \pm 0.01(stat) \pm 0.24(syst)) \times 10^{-10}$

$\pi \nu \bar{\nu}$ Background Analysis (e.g. $K^+ \rightarrow \pi^+ \pi^0$)

$\pi v \overline{v}$ Analysis

• For the analysis the number of $K^+ \to \pi^+ \pi^0$ ($K_{2\pi}$) background events in a given region \mathcal{R} is estimated using :

$$N_{\pi\pi}^{exp}(\mathcal{R}) = \sum_{j} \left[N_{\pi\pi} (\pi^+ \pi^0 R)_j \cdot f_j^{kin}(\mathcal{R}) \right]$$

- $f_j^{kin}(\mathcal{R})$ is the kinematic tail fraction of $K_{2\pi}$ events entering into region \mathcal{R} and momentum bin j.
- $f_j^{kin}(\mathcal{R})$ is measured from data by selecting a $K_{2\pi}$ control sample by tagging the π^0 from two photons in the LKr and from MC using a $K_{2\pi}$ sample with 300 MHz pileup tracks in GTK.

Results :

- $N_{\pi\pi}^{exp}(CR1) = 0.52 \pm 0.08(stat) \pm 0.03(syst)$
- $N_{\pi\pi}^{exp}(R1) = 0.022 \pm 0.004(stat) \pm 0.002(syst)$

27

A 62

Background Expectation (4) : $K^+ \rightarrow \pi^+ \pi^- e^+ \nu_e$

- Validated using 5 different control samples selected with five different selections. ٠

Validation Sample	Sample Selection	N Expected	N Observed
Bifurcation (+)	Bifurcated selection (invert photon and multiplicity (extra activity) veto cuts) applied to a positive track. (No RICH selection applied).	15.5 + 0.4	8
Bifurcation (-)	Bifurcated selection (invert photon and multiplicity (extra activity) veto cuts) applied to a negative track. (No RICH selection applied).	4.0 ± 0.4	2
BIF+RICH(-)	As above but with RICH applied for -ve track.	3.2 ± 0.2	3
Full (-)	Full $\pi^- + nothing$ selection (RICH not applied).	0.7 ± 0.1	1
Full+RICH(-)	Full $\pi^- + nothing$ selection (RICH selection applied for –ve track).	1.2 ± 0.1	5

Background estimated from study of $\sim 4 \times 10^8$ MC $K^+ \rightarrow \pi^+ \pi^- e^+ \nu_{\rho}$ events, (R1+R2) : ullet

 $N_{\pi\pi ev}^{exp} = 0.018^{+0.024}_{-0.017}(stat) \pm 0.009(syst)$

NA62

29

Result

Unblinding Control Regions

Joel Swallow

BIRMINGHAM

NA62 Broader Physics Program

- Primary goal: measurement of $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \times 10^{-11}$
- However with a very large sample of K⁺ decays and a versatile detector and trigger system a broader physics program is being explored:
- 1. Rare kaon decays
 - e.g. $K^+ \rightarrow \pi^+ \mu^+ \mu^-$
- 2. Forbidden kaon decays (LFV, LNV) • e.g. $K^+ \rightarrow \pi^- l_1^+ l_2^+$, $K^+ \rightarrow \pi^+ l_1^+ l_2^-$ (for $l_1 l_2 = ee, \mu\mu, e\mu$)
- 3. Exotics
 - e.g. Heavy Neutral Lepton (HNL) [Phys.Lett.B 778 (2018)]

31