

P.N. LEBEDEV PHYSICAL INSTITUTE OF THE RUSSIAN ACADEMY OF SCIENCES

A. Drutskoy LPI, Moscow

Heavy Flavor results from Tevatron

30th Rencontres de Blois Particle Physics and Cosmology

June 3-8, 2018, Blois, France

Rencontres de Blois,

Heavy Flavor results from Tevatron,

June 3-8, 2018, Blois, France

A. Drutskoy

Outline

- Introduction
- Study of X(5568) \rightarrow $B_s^0 \pi^{\pm}$ at D0 and CDF
 - D0: first evidence in hadronic mode $B_s^0 \rightarrow J/\psi \phi$
 - D0: confirmation with semileptonic mode $B_s^0 \rightarrow D_s^- \mu^+ \nu$
 - CDF: upper limit in hadronic mode $B_s^0 \rightarrow J/\psi \phi$
 - Comparison of analyses details
- Conclusion

Detectors

Tevatron $p\overline{p}$ at $\sqrt{s} = 1.96$ TeV Run II operation from 2001 to 2011

Run II : CDF and D0 (b-physics) $\int \mathcal{L} dt \sim 10 \text{ fb}^{-1}$

Both are multipurpose, high acceptance detectors with good tracking and vertex systems

Multi-quark states

~20 multi-quark states were observed since 2003 with high significance.

Vivid examples of four-quark states: $X(3782) \rightarrow J/\psi \pi^+\pi^-$, $Z(4430)^+ \rightarrow \Psi' \pi^+$, $X(4140) \rightarrow J/\psi \phi$, $Z_b(10610)^+ \rightarrow Y\pi^+$, $Z_b(10650)^+ \rightarrow Y\pi^+$; pentaquarks: $P_c(4450)^+ \rightarrow J/\psi \rho$, $P_c(4380)^+ \rightarrow J/\psi \rho$.

4-quark states interpretations: tetraquarks (large binding energy), molecular states (small binding energy), mixture with conventional states (if possible).

Many observed multi-quark states lie close to two-hadron mass thresholds and, therefore, they can be interpreted as molecular states (but not all).

Recent review on multiquark states: Olsen, Skwarnicki, Zieminska, Rev.Mod.Phys. 90, 015003 (2018)

Evidence for X(5568) \rightarrow B_s⁰ π^{\pm} state with B_s⁰ \rightarrow J/ $\psi \phi$

$X(5568) \rightarrow B_s^0 \pi^{\pm}$ with semileptonic B_s^0 decay

 $X^{+}(5568) \rightarrow B_{s}\pi^{+}; \quad B_{s} \rightarrow D_{s}^{-}\mu^{+}X_{any}; \quad D_{s}^{-} \rightarrow \phi(1020)\pi^{-}; \phi \rightarrow K^{+}K^{-}$

- 1. Calculate visible mass $M(D_s^-\mu^+)$
- 2. Use visible mass as B_s mass
- 3. Combine B_s and π^+ to form X
- 4. Estimate $M(X) = M(B_s^0 \pi^{\pm}) =$ $M(D_s \mu \pi) - M(D_s \mu) + M_{PDG}(B_s^0)$

 $\begin{array}{l} \underline{Selections:} \ \ \textbf{4.5} < \textbf{M}(\textbf{D}_{s}\,\mu\,\textbf{)} < \textbf{M}(\textbf{B}_{s});\\ \textbf{3} < \textbf{p}_{T}(\mu) < \textbf{25} \ \text{GeV/c;} \ \textbf{p}_{T}(K) > 1 \ \text{GeV/c;}\\ \textbf{1.012} < \textbf{M}(KK) < \textbf{1.03} \ \text{GeV/c^{2}}; \ \textbf{p}_{T}\,(\textbf{D}_{s}\,\mu) > \textbf{10} \ \text{GeV/c;}\\ \textbf{1.91} < \textbf{M}(KK\pi) < \textbf{2.03} \ \text{GeV/c^{2}} \end{array}$

➔ Resolution is good enough to check X(5568)

$X(5568) \rightarrow B_s^0 \pi^{\pm}$ with semileptonic B_s^0 decay

Comparison of X(5568) production in two channels

B. **	Semile	ptonic	Hadronic (from Ref. [15])		
	Cone cut	No cone cut	Cone cut	No cone cut	
Fitted mass, MeV/c^2	$5566.4^{+3.4}_{-2.8}$ $^{+1.5}_{-0.6}$	$5566.7^{+3.6}_{-3.4} {}^{+1.0}_{-1.0}$	$5567.8 \pm 2.9^{+0.9}_{-1.9}$	5567.8	
Fitted width, MeV/c^2	$2.0^{+9.5}_{-2.0}$ $^{+2.8}_{-2.0}$	$6.0^{+9.5}_{-6.0}$ $^{+1.9}_{-4.6}$	$21.9 \pm 6.4^{+5.0}_{-2.5}$	21.9	
Fitted number of signal events	$121^{+51}_{-34} {}^{+9}_{-28}$	$139^{+51}_{-63} {}^{+11}_{-32}$	$133\pm31\pm15$	$106 \pm 23 (\mathrm{stat})$	
Local significance	4.3σ	4.5σ	6.6σ	4.8σ	
Significance with systematics	3.2σ	3.4σ	5.6σ		
Significance with LEE+systematics			5.1σ	3.9σ	

Production ratio of X(5568) to B_s :

 $\rho(X(5568)/B_s) = 7.3^{+2.8}_{-2.4}(stat)^{+0.6}_{-1.7}(syst)\%$ $\rho(X(5568)/B_s) = 8.6 \pm 1.9(stat) \pm 1.4(syst)\%$

- semileptonic channel, no cone cut
- hadronic channel, cone cut
- D0 measurement in semileptonic channel confirms X(5568) observed in hadronic channel
- ⇒ Good agreement between results obtained in hadronic and semileptonic channels

D0: simultaneous fit to hadronic and semileptonic channels

⇒ Significance increased with semileptonic channel added

CDF search for X(5568) \rightarrow B_s⁰ π [±] with B_s⁰ \rightarrow J/ ψ ϕ

CDF collaboration, PRL 120, 202006 (2018)

Selections:

Only central muons selected: pT(μ) > 1.4 GeV/c for |η| < 0.6 pT(μ) > 2.0 GeV/c for 0.6 < |η| < 1.0

 $M(\mu^{+}\mu^{-}): M_{PDG}(J/\psi) \pm 80 \text{ MeV/c}^{2}$

4-track constrained vertex fit (non-prompt)

 $M(J/\psi \phi)$: $M_{PDG}(B_s) \pm 30 \text{ MeV/c}^2$

 $pT(B_s) > 10 GeV/c$

Combine B_s with pion from primary vertex pT (π^+) > 0.4 GeV/c

 $M(B_s^0 \pi^{\pm}) = M(J/\psi \phi \pi^{\pm}) - M(J/\psi \phi) + M_{PDG}(B_s^0) - resolution 1.8 \text{ MeV/c}^2$

CDF search for X(5568) \rightarrow B_s⁰ π^{\pm} with B_s⁰ \rightarrow J/ $\psi \phi$

Model using sidebands omitting range of $\pm \Gamma_{X(5568)}$ (21.6 MeV) around 5568 MeV Parametrize bkg with polynomial and combine w/ X(5568) signal shape to fit data. Fit yields 36 ± 30 events.

It results in $\rho(X(5568)/B_s) = 2.3 \pm 1.9 \text{ (stat)} \pm 0.9 \text{ (syst)}\%$

CDF searched for X(5568), as did not see signal, set upper limit: ρ (X(5568) / Bs) < 6.7% at 95% *CL*.

World Comparison

Analysis	Production ratio (B _s / X(5568))	Reference	
D0 (J/ψ φ)	8.6 ± 1.9 ± 1.4%	PRL 117,022003(2016)	
D0 (μ D_s)	7.3 ^{+2.8} -2.4 ^{+0.6} -1.7%	PRD 97, 092004 (2018)	
LHCb	< 2.4% (p _T (B _s ⁰) > 10 GeV)	PRL 117,152003 (2016)	
CMS	< 1.1% (p _T (B _s ⁰) > 10 GeV)	PRL 120, 202005 (2018)	
ATLAS	< 1.5% (p _T (B _s ⁰) > 10 GeV)	PRL 120, 202007 (2018)	
CDF	< 6.7% (2.3 ± 1.9 ± 0.9%)	PRL 120, 202006 (2018)	

LHC experiments do not confirm X(5568), CM energy is rather different. CDF result has 2 sigma tension with D0 result.

Different kinematic ranges make "apples-to-apples" comparison difficult.

Conclusions

- $X(5568) \rightarrow B_s^0 \pi^{\pm}$ state observed by D0 in hadronic B_s^0 decay is seen also in semileptonic B_s^0 channel. Signal parameters obtained by D0 in these two channels are in good agreement.
- CDF searched for X(5568), as did not see signal, set upper limit on production ratio <6.7% at 95% *CL*. Corresponding mean value is equal to 2.3 ± 1.9 (stat) ± 0.9 (syst)%, that has about 2σ tension with D0 result.
- LHC experiments do not see X(5568) with upper limits about (1-2)%.
 However kinematic conditions on LHC are rather different from Tevatron.

Bob Hirosky slide, Moriond QCD, 2018 Tevatron Comparison

	Analysis	f _{Bs/X(5568)}	Ref.
First evidence	D0 (J/ψ φ)	8.6 ± 1.9 ± 1.4%	PRL 117,022003(2016)
Confirmation	D0 (μ D _s)	7.3 ^{+2.8} -2.4 ^{+0.6} -1.7%	arXiv:1712.10176
Limit set	$CDF\;(J/\psi\;\phi)$	< 6.7% (2.3 ± 1.9 ± 0.9%)	arXiv:1712.09620

D0 observes signal enhancement for 1 or both muons having $|\eta^{\mu}| > 1.0$, where CDF analysis has no acceptance.

Test with $B_d^0 \pi^+$ combination

Moriond QCD,

Systematic uncertainties on combined fit of decay modes

Source	Sample	mass, MeV/c^2	width, MeV/c^2	event yields, events	
				hadronic	semileptonic
		No Cone Cut			
(i) Background shape description	Both	+1.1; -1.9	+1.4; -5.1	+7.6; -32.8	+8.4; -37.1
(ii) SL background reweighting	Semileptonic	+0.1; -0.0	+0.1; -0.3	+1.8; -1.1	+2.0; -1.4
(iii) Hadronic MC samples	Hadronic	+0.3; -0.0	+1.1; -0.0	+7.2; -0.0	+7.9; -0.0
(iv) Hadronic Sidebands	Hadronic	+0.3; -0.1	+0.2; -0.6	+4.5; -3.7	+4.9; -4.2
(v) SL MC/Data ratio	Not Applicable	— ;—	;	;	;
(v) Hadronic MC/Data ratio	Hadronic	+0.1; -0.0	+0.5; -0.0	+7.4; -0.1	+8.1; -0.2
(vii) B_s^0 mass scale, MC and data	Both	+0.1; -0.1	+0.9; -0.2	+5.1; -0.0	+5.6; -0.0
(viii) Detector resolution	Both	+0.1; -0.2	+1.6; -3.9	+1.5; -3.5	+1.6; -4.0
(ix) Missing neutrino effect	Semileptonic	+0.2; -0.1	+0.1; -0.1	+0.4; -0.0	+0.1; -0.3
(x) P -wave Breit-Wigner	Both	+0.0 ; -0.6	+3.3; -0.0	+10.7; -0.0	+11.8; -0.0
(xi) Mass offset	Both	+0.4; -0.4	+0.2; -0.2	+0.0; -0.0	+0.0; -0.1
(xii) Production fraction	Both	+0.0; -0.0	+0.1; -0.1	+0.8; -0.8	+3.5; -3.6
Total		+1.3; -2.0	+4.2; -6.5	+18.2; -33.2	+20.3; -37.8

Retrospective to four-quark states

Four-quark states are not forbidden theoretically.

These states can be separated using information about masses, widths, charges, quantum numbers, production and decay modes (and their rates).

Exotic four-quark states can be theoretically described as tightly bounded (tetraquark) or loosely bounded (molecule, hadroquarkonium):

Observed with high stat significance four-quark states: $Z(4430)^+ \rightarrow \Psi' \pi^+$, $X(4140) \rightarrow J/\psi \phi$, $Z_b(10610)^+ \rightarrow Y\pi^+$, $Z_b(10650)^+ \rightarrow Y\pi^+$, not well established $Z(4050)^+ \rightarrow \chi_{c1} \pi^+$, $Z(4250)^+ \rightarrow \chi_{c1} \pi^+$. Probably X(3872) is mixture of four- and two-quark states. Molecular interpretation works well for the states. Other exotic states: pentaquarks $P_c(4450)^+ \rightarrow J/\psi p$, $P_c(4380)^+ \rightarrow J/\psi p$

More information about exotic multiquark states is required to build explicit theory.

Non-standard states observed with high significance

Observation of new $B_s^0 \pi^{\pm}$ state

To improve resolution: $m(B_s \pi^+) = m(J/\psi \phi \pi^+) - m(J/\psi \phi) + 5.3667$

Observation of new $B_s^0 \pi^{\pm}$ state

D0: arXiv:1602.07588 [hep-ex], submitted to PRL.

$$F = f_{\rm sig} \times F_{\rm sig}(m_{B\pi}, M_X, \Gamma_X) + f_{\rm bgr} \times F_{\rm bgr}(m_{B\pi})$$

 F_{sig} – relativistc S-wave BW convolved with gaussian (3.8 MeV/c² detector resolution)

$$BW(m_{B\pi}) \propto \frac{M_X \Gamma(m_{B\pi})}{(M_X^2 - m_{B\pi}^2)^2 + M_X^2 \Gamma^2(m_{B\pi})}.$$

M = 5567.8 \pm 2.9 (stat) MeV/c²

$$\Gamma$$
 = 21.9 ± 6.4 (stat) MeV/c²

N = 133 ± 31 (stat)

Significance = 6.6σ (local significance, obtained from Wilk's theorem)

Significance = 5.1σ including look-elsewhere effect (LEE) and systematics

Multi-quark states

~20 multi-quark states were observed since 2003 with high significance.

Vivid examples of four-quark states: $Z(4430)^+ \rightarrow \Psi' \pi^+$, $X(4140) \rightarrow J/\psi \phi$, $Z_b(10610)^+ \rightarrow Y\pi^+$, $Z_b(10650)^+ \rightarrow Y\pi^+$; pentaquarks: $P_c(4450)^+ \rightarrow J/\psi p$, $P_c(4380)^+ \rightarrow J/\psi p$. Also many others.

Many observed multi-quark states lie close to two-hadron mass thresholds and, therefore, they can be interpreted as molecular states.

Good candidate for tetraquark was found by DO: X(5568), far below BK threshold X⁺(5568) $\rightarrow B_s^0 \pi^+$; $B_s^0 \rightarrow J/\psi \phi$; $J/\psi \rightarrow \mu^+ \mu^-$; $\phi \rightarrow K^+ K^-$

X(5568) is not seen at LHCb & CMS (E=7-8 TeV, pp). Unclear theoretical interpretation due to low mass. It's possible for scalar-scalar diquark-antidiquark 0⁺ (arXiv:1705.03741).