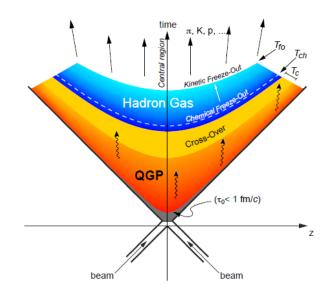

Heavy-flavour highlights in heavy-ion collisions from ALICE at the LHC

Nicole Bastid LPC, CNRS-IN2P3, University Clermont Auvergne, France on behalf of the ALICE Collaboration

Why study heavy flavours?



Heavy-ion collisions

☐ Charm and beauty quarks produced in initial hard scatterings, prior to the formation of the Quark-Gluon Plasma (QGP)

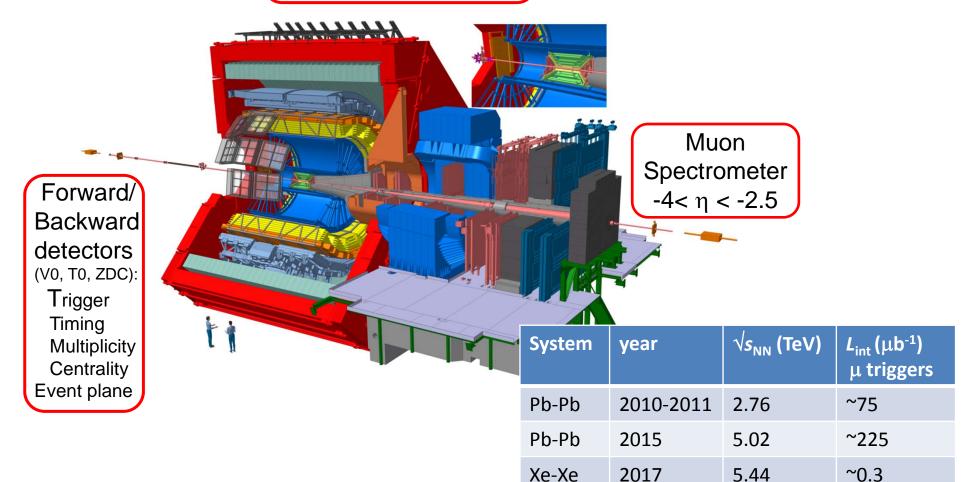
$$\tau_{c/b} \sim 0.01 - 0.1 \text{ fm/}c < \tau_{QGP} (0 - 1 - 1 \text{ fm/}c)$$

- ☐ Flavour conserved by the strong interaction
- Experience the full collision history
 - Excellent probes to characterize the QGP

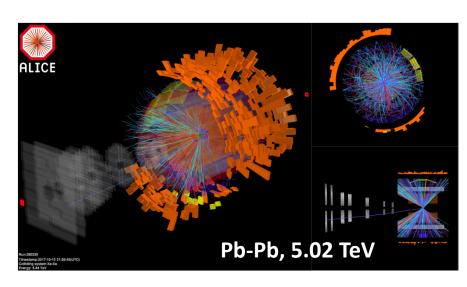
☐ Open heavy flavours:

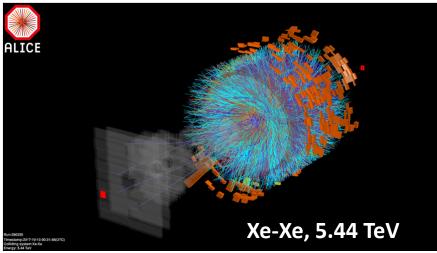
- In-medium parton energy loss → colour-charge and quark-mass dependence
- Heavy-quark participation in the collective expansion, thermalisation of the medium
- Modification of hadronisation mechanism in the medium

☐ Quarkonia:


- Colour screening in the QGP → suppression
- Charmonium regeneration
- pp collisions: reference, tests of pQCD-based predictions, production mechanisms
 p-Pb collisions: control experiment, cold nuclear matter effects

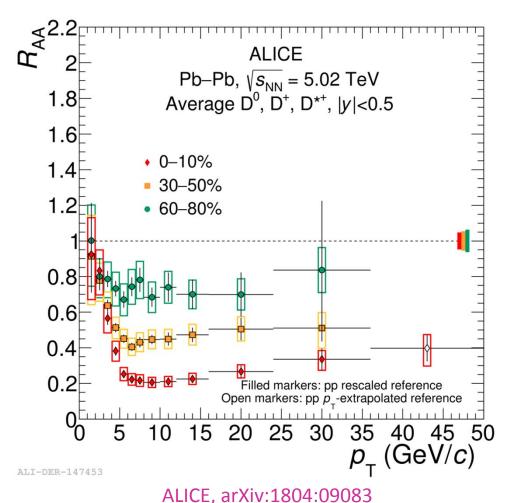
ALICE layout


Central Barrel, |η| < 0.9


vertexing (ITS), tracking (ITS, TPC), PID (ITS, TPC, TOF, TRD, HMPID, Calorimeters)

Selected open heavy-flavour highlights in Pb-Pb and Xe-Xe collisions

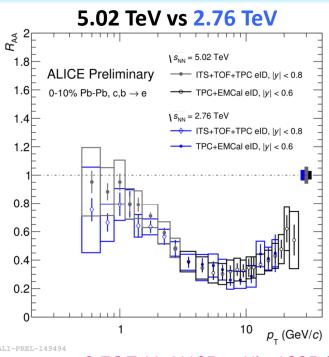
Open heavy-flavour channels in ALICE ☐ Charmed hadrons (|y|) < 0.5

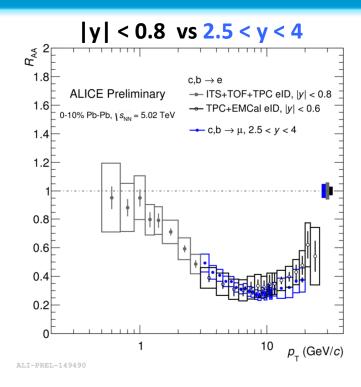

- $D^0 \rightarrow K^-\pi^+$
- D+ \rightarrow K $^{-}\pi^{+}\pi^{+}$
- $D^* \rightarrow D^0 (K^-\pi^+)$
- $D_s^+ \rightarrow \phi (K^-K^+)\pi^+$
- $\Lambda_c^+ \to pK_s^0$
- $\Lambda_c^+ \to pK^-\pi^+$
- $\Lambda_c + \rightarrow e^+ \Lambda v_e$
- $\Xi_c^0 \rightarrow e^+\Xi^-\nu_e$

☐ Heavy-flavour hadron decay leptons

- c, b hadrons \rightarrow eX (|y| < 0.9)
- c, b hadrons $\to \mu X$ (2.5 < y < 4)
- b → eX via impact parameter

D-meson R_{AA} in Pb-Pb collisions at 5.02 TeV

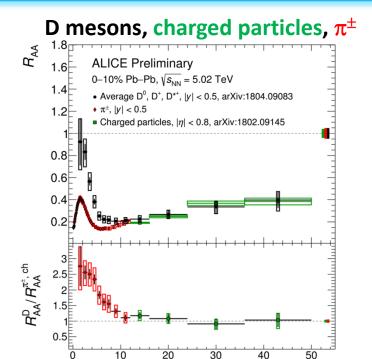


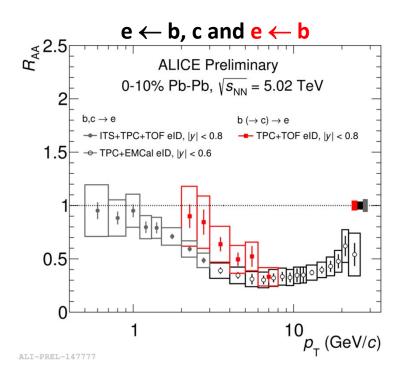

$$R_{\rm AA}(p_{\rm T}) = 1/\langle T_{\rm AA} \rangle \times \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

- Measurement over a wide p_T interval for 0-10%, 30-50% and 60-80% centrality classes
- ☐ Strong suppression of non-strange D mesons, increasing with centrality: a factor ~ 5 for $5 < p_T < 10 \text{ GeV/}c$ in the 10% most central collisions

Heavy-flavour hadron decay leptons R_{AA} in central Pb-Pb collisions at 5.02 TeV

Electrons at 2.76 TeV: ALICE, arXiv:1805.04379

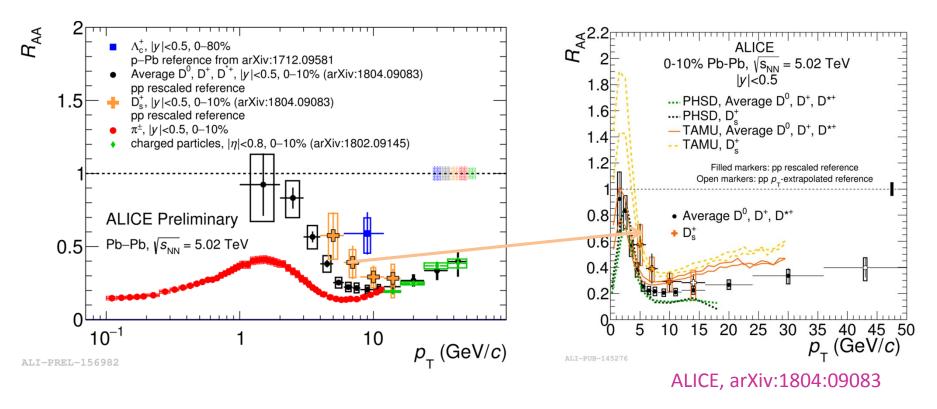

- □ Similar R_{AA} at 5.02 TeV and 2.76 TeV for heavy-flavour hadron decay electrons
 - Interplay between harder p_T spectra and stronger energy loss at 5.02 TeV w.r.t. 2.76 TeV [M. Djordjevic, PRC 92 (2015) 024918]


Caveat: possible different fractions of charm and beauty

- Similar R_{AA} for heavy-flavour hadron decay muons at forward rapidity (2.5 < y < 4) and heavy-flavour hadron decay electrons at central rapidity (|y| < 0.8)
 - ➤ Heavy quarks undergo strong interactions in the medium over a wide y region

Open heavy-flavour R_{AA} hierarchy (I)

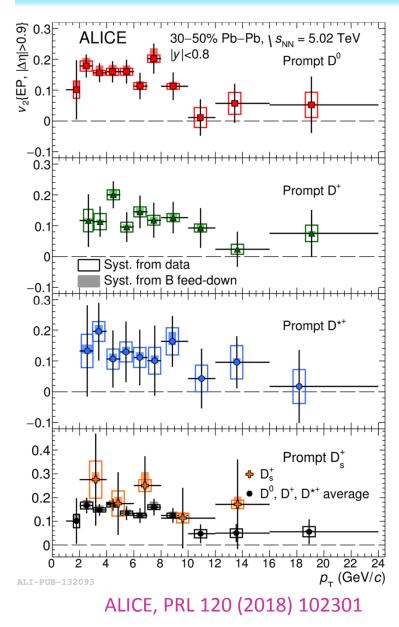
 $\Delta E(\pi^{\pm}) > \Delta E(D) > \Delta E(B) \xrightarrow{\cdot} R_{AA}(\pi^{\pm}) < R_{AA}(D) < R_{AA}(B)$ as naively expected from colour-charge and mass depend energy loss

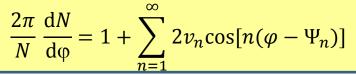

 \Box Comparable D-meson, charged particles and $\pi^{\pm} R_{AA}$ for $p_T > 10 \text{ GeV/}c$

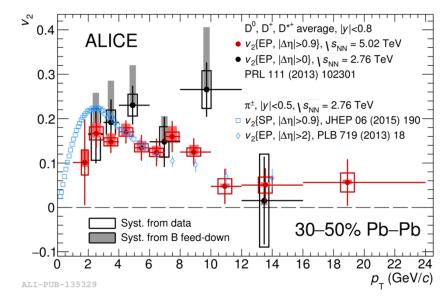
 p_{\perp} (GeV/c)

- f D-meson R_{AA} larger than that of π^{\pm} at low p_{T}
 - Interpretation not straightforward: possible mass and Casimir factor effects, different radial flow influence, different shapes of parton *p*_T distributions and different fragmentation functions [Djordjevic et al., PRL 112 (2014) 042302]
- \square Hint of larger R_{AA} of $e \leftarrow b$ than that of $e \leftarrow b$, c

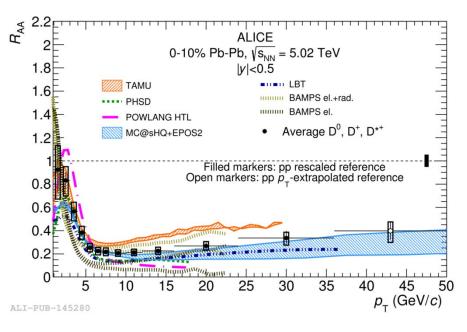
Open heavy-flavour R_{AA} hierarchy (II)

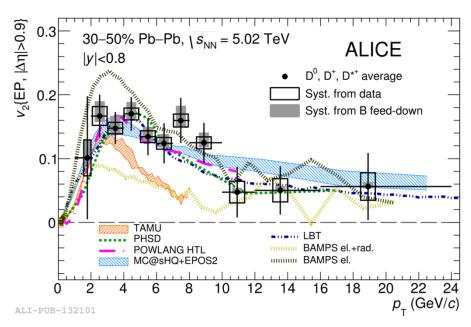



- ☐ Hint of enhanced D+_s production compared to non-strange D mesons in central Pb-Pb collisions at 5.02 TeV as expected from models
 - Hadronisation via coalescence in a strangeness-rich environment?
- \blacksquare Hint of a larger R_{AA} for Λ_c^+ in 0-80% than for D mesons in 0-10%
- > R_{AA} ordering consistent with recombination picture


Elliptic flow (v_2) in Pb-Pb collisions

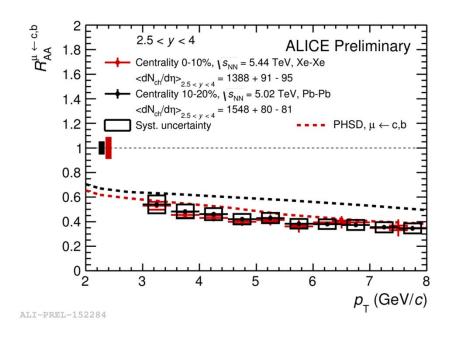
Reaction Plane

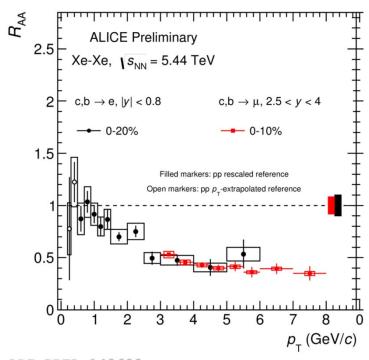




- □ First D+_s v₂ measurement, similar as non-strange D v₂
- Positive D-meson v_2 in $2 < p_T < 10 \text{ GeV/}c$ (hint of a larger charged-pion v_2 for $p_T < 4 \text{ GeV/}c$)
 - Participation of charm quarks in the collective expansion of the system

Comparison with models

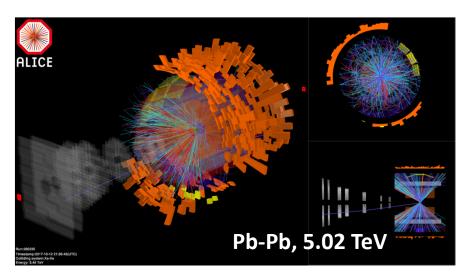

ALICE, arXiv:1804:09083

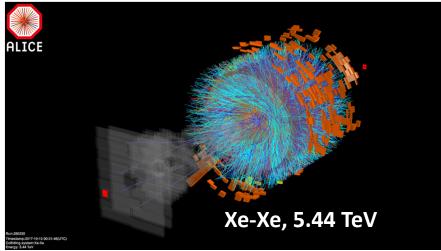

ALICE, PRL 120 (2018) 102301

- Models with diffusion coefficient $1.5 < 2\pi D_s(T) < 7$ at $T = T_c$ with a thermalisation time $\tau_{charm} = 3-14$ fm/c describes better the v_2 measurement
- \square Simultaneous description of R_{AA} and v_2 over a wide p_T interval is challenging: improved precision of the measurements can allow us to set important constraints to models

POWLAND: Eur. Phys. J. C75 (2015) 121; MC@sHQ: PRC 89 (2014) 014905; LBT: PLB 777 (2018) 255; BAMPS: J. Phys. G 42 (2015) 115106; PHSD: PRC 93 (2016) 034906

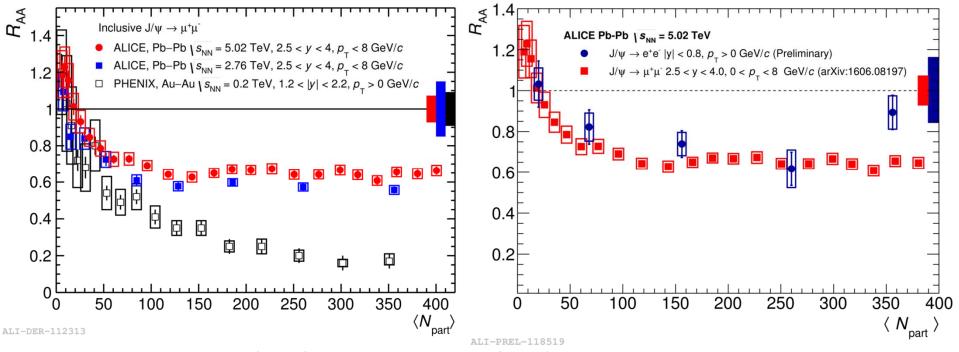
Heavy-flavour decay lepton R_{AA} in Xe-Xe collisions




ALI-PREL-148699

- ☐ Similar heavy-flavour hadron decay muon R_{AA} observed in central Xe-Xe and Pb-Pb collisions at similar charged-particle multiplicity
 - Possible interplay of geometry and path-length dependence of energy loss
 - Additional constraints to model calculations
- ☐ Similar suppression also observed for heavy-flavour hadron decay electrons at mid-rapidity

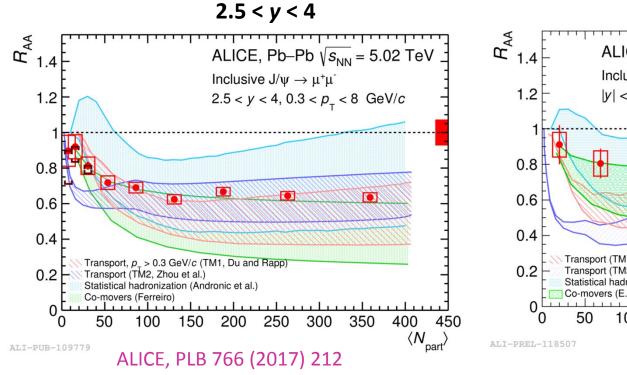
Selected quarkonium highlights in Pb-Pb and Xe-Xe collisions

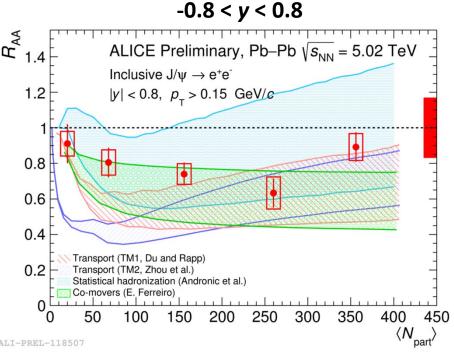

Quarkonium channels in ALICE

- \Box Mid rapidity (|y| < 0.9)
 - $J/\psi \rightarrow e^+e^-$
- \Box Forward rapidity (2.5 < y < 4)

 - $\psi(2S) \rightarrow \mu^+\mu^-$
 - $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S) \rightarrow \mu^+\mu^-$

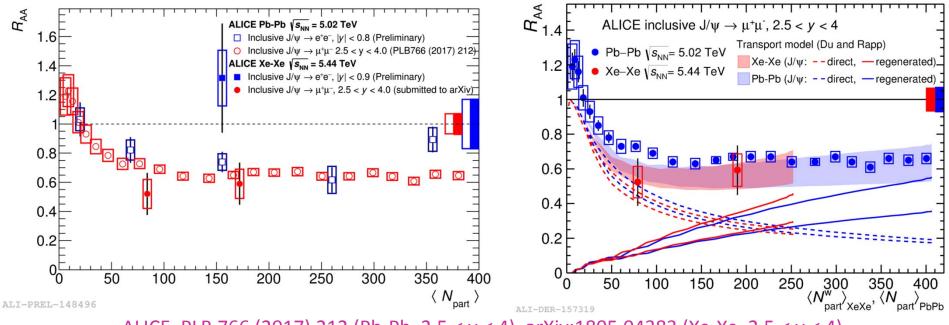
J/ψ R_{AA} in Pb-Pb collisions at 5.02 TeV




ALICE, PLB 766 (2017) 212, PHENIX, PRL 98 (2007) 232301

- □ Significant J/ ψ suppression at $\sqrt{s_{NN}} = 2.76$ TeV with a saturation for $\langle N_{part} \rangle > 50$
- □ Different trends observed at RHIC
- Measured suppression at 5.02 TeV confirms the observations at 2.76 TeV with an increased precision
- $lue{}$ Comparable J/ ψ suppression at forward and mid rapidity with a hint of less suppression at mid rapidity in the most central collisions

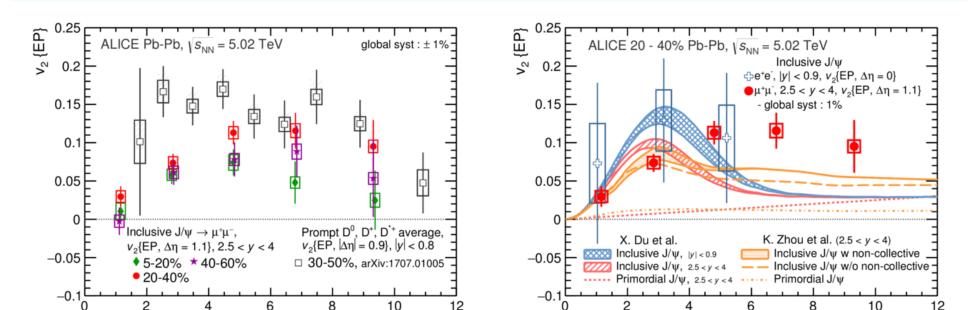
J/ψ R_{AA} in Pb-Pb collisions at 5.02 TeV



- Experimental observations interpreted as interplay between suppression and regeneration
- ☐ Data described by all models within their rather large uncertainties
 - ➤ Main uncertainty sources: charm cross section and cold nuclear matter effects on quarkonium production

$J/\psi R_{AA}$ in Xe-Xe and Pb-Pb collisions

ALICE, PLB 766 (2017) 212 (Pb-Pb, 2.5 < y < 4), arXiv:1805.04383 (Xe-Xe, 2.5 < y < 4)


Forward rapidity

- □ R_{AA} in Xe-Xe collisions in agreement, within large uncertainties, with the Pb-Pb results and described by a transport model
- □ Similar relative contribution of suppression and regeneration processes at similar $\langle N_{\text{part}} \rangle$

Mid rapidity

 \square R_{AA} in Xe-Xe collisions consistent with unity within large uncertainties

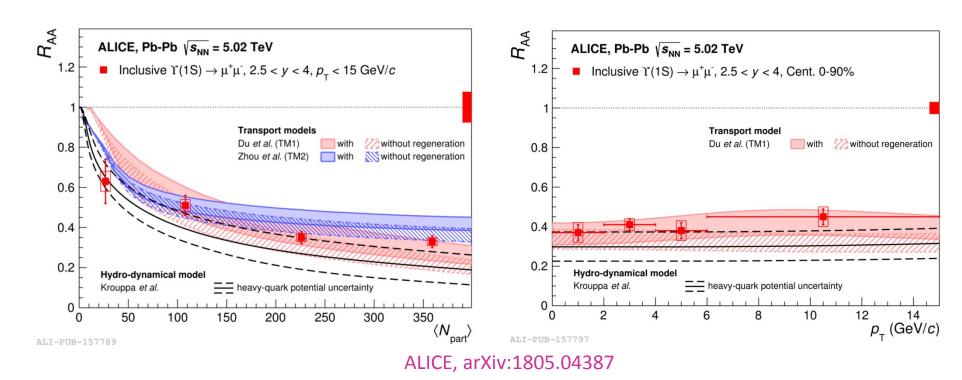
J/ψ elliptic flow in Pb-Pb collisions at 5.02 TeV

- □ Significant J/ ψ v_2 signal observed at forward rapidity in 2 < p_T < 8 GeV/c
 - \triangleright Highest significance: 6.6σ in $4 < p_T < 6$ GeV/c for the 20-40% centrality class

ALICE, PRL 120 (2018) 102301, ALICE, PRL 119 (2017) 242301

- ☐ Compatible results at forward and mid rapidity
- \square At low p_T , transport models including regeneration reproduce the data

 p_{\pm} (GeV/c)


- \square At high p_T , the measured v_2 is underestimated by the models
- \square Larger D-meson v_2 at low p_T (but different kinematics)
- → Suggests that J/ψ mesons inheriting their flow from thermalized charm quarks

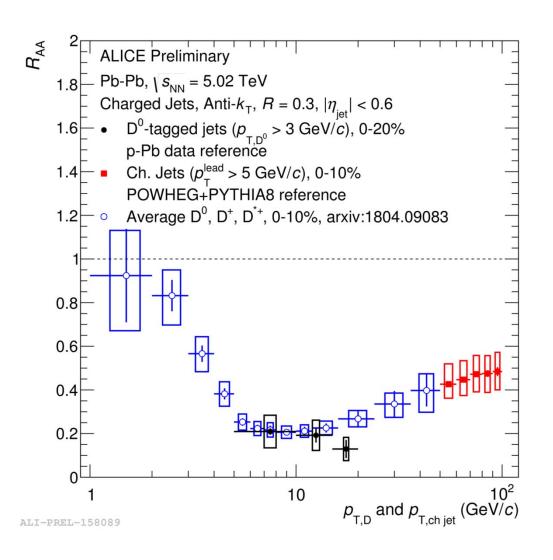
 p_{τ} (GeV/c)

ALI-PUB-138837

$\Upsilon(1S)$ and $\Upsilon(2S)$ R_{AA} in Pb-Pb collisions at 5.02 TeV

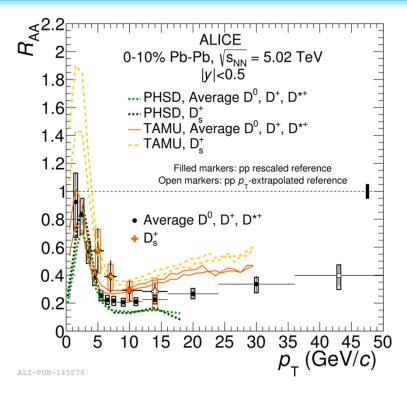
- Clear Y(1S) suppression increasing with increasing centrality: a factor ~3 in the 0-10% centrality class
- \square No significant dependence of the $\Upsilon(1S)$ suppression on p_T
- \square Υ (1S) suppression described by transport models with and without regeneration
- \Box Data on the upper edge of hydro-dynamical model for $\langle N_{part} \rangle > 70$
- \square R_{AA} $(\Upsilon(2S)) / R_{AA}$ $(\Upsilon(1S)) = 0.28 \pm 0.12$ (stat.) ± 0.06 (syst.) in 0-90% centrality class

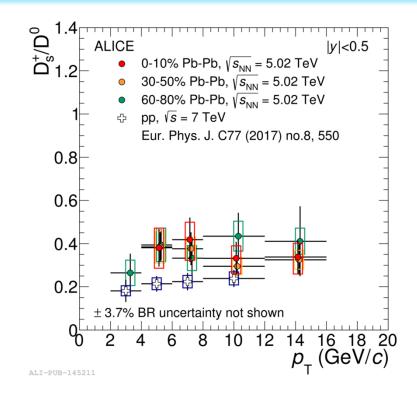
Conclusion


- □ Large amount of results produced in heavy-ion collisions in the heavy-flavour sector during Run-1 and Run-2
- □ Open heavy flavours
- Strong suppression of heavy-flavour yields at high p_T
- Hint of R_{AA} (D+_s) > R_{AA} (D) and R_{AA} (Λ +_c) > R_{AA} (D): R_{AA} ordering consistent with recombination picture
- Significant D-meson v_2 : strong coupling of charm quarks with the medium
- Similar R_{AA} in central Xe-Xe and Pb-Pb collisions at similar <dN/dη>
 - > Geometry, path-length dependence of in-medium energy loss
- Quarkonia
- J/ψ R_{AA} described by interplay of suppression and recombination mechanisms
- Significant $J/\psi v_2$ at low/intermediate p_T from thermalization of charm quarks
- Clear suppression of Y production
- ☐ More to come soon: second Pb-Pb run scheduled at the end of 2018
- ☐ After the ALICE Upgrade, improved precision on current measurements and access to new set of observables to characterize the QGP properties
 - First measurement of D⁰-tagged jet R_{AA} very promising

→ Stay tuned

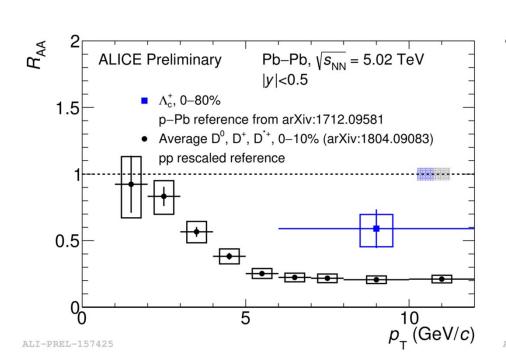
D-meson tagged jets



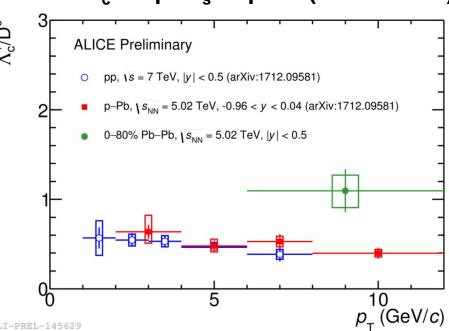


Similar suppression for D⁰-tagged jets as for D⁰ mesons

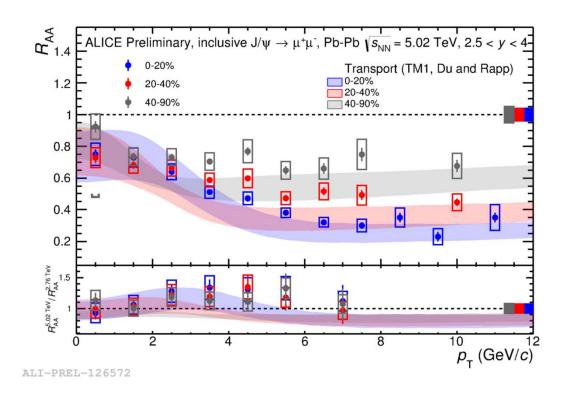
Strange and non-strange D-meson R_{AA} in Pb-Pb collisions at 5.02 TeV


ALICE, arXiv:1804.09083

PHSD: PRC 93 (2016) 034906, TAMU: PLB 735 (2014) 445

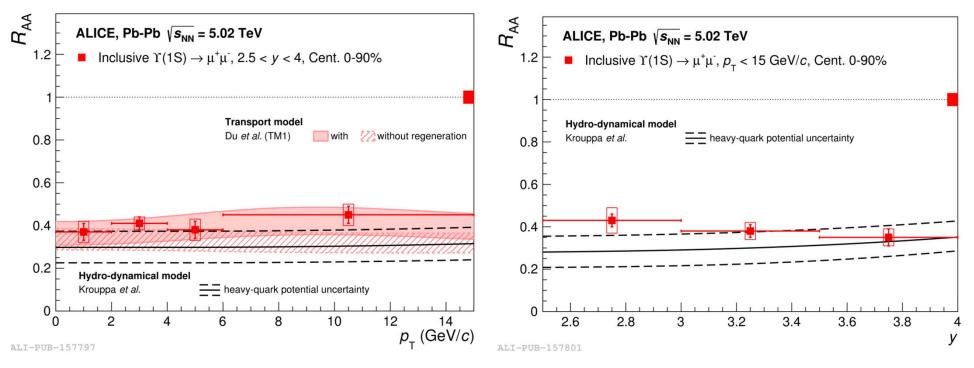

- □ Hint of enhanced D⁺_s production compared to non-strange D mesons in central Pb-Pb collisions at 5.02 TeV as expected from models
 - > Hadronisation via coalescence in a strangeness-rich environment?
- □ No significant dependence of D⁺_s/D⁰ ratio on collision centrality within uncertainties
 - > Expected within a pure coalescence scenario

Λ_c^+ measurements in Pb-Pb collisions at 5.02 TeV


$$\Lambda_c^+ \rightarrow p \ K^0_s \rightarrow p \pi^+ \pi^- (BR \sim 1.58\%)$$

- \square Λ_c^+ measured in Pb-Pb colllisions at 5.02 TeV for 0-80%:
- \Box Hint of a larger R_{AA} for Λ_c^+ in 0-80% than for D mesons in 0-10%
- \square Hint of an enhanced Λ_c^+/D^0 ratio in Pb-Pb compared to pp and p-Pb collisions
- \square Λ_c^+/D^0 ratio underestimated by models:
 - p_T = 9 GeV/c: **0.15-0.2** at LHC and RHIC (Ghost et al., PRD 90 (2014) 054018) and ~**0.2** in Pb-Pb (0-20%) at 5.5 TeV (Das et al., PRD 94 (2016) 114039); p_T = 8 GeV/c: **0.1-0.2** in Pb-Pb (0-20%) at 2.76 TeV (Plumari et al., Eur. Phys. C 78 (2018) 348)
 - → fragmentation not well understood

$J/\psi R_{AA}$ in Pb-Pb collisions at 5.02 TeV

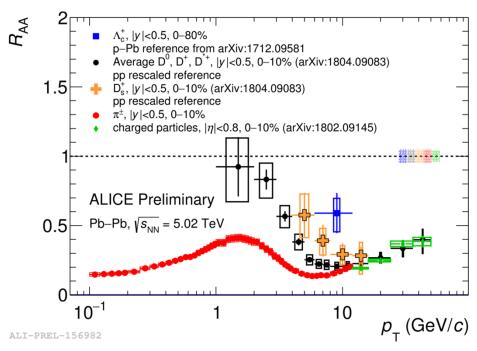


- \square Stronger p_T dependence in central collisions
- \square Suppression increases with increasing centrality at high p_T
- ☐ Experimental trends reproduced by transport model calculations

$\Upsilon(1S)$ and $\Upsilon(2S)$ R_{AA} in Pb-Pb collisions at 5.02 TeV

ALICE, arXiv:1805.04387

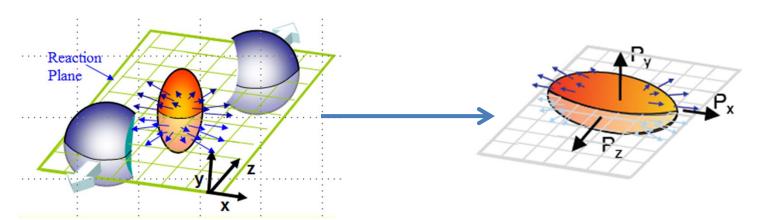
- \square No significant dependence of the $\Upsilon(1S)$ suppression on p_T and y
- ☐ In agreement with models within uncertainties
- \square R_{AA} (Y(2S)) / R_{AA} (Y(1S)) = 0.28 ± 0.12 (stat.) ± 0.06 (syst.) in 0-90% centrality class


Λ^+_c/D^0 ratio in Pb-Pb collisions

Oh et al. PRC 79 (2009) 044905	Au+Au (central) 0.2 TeV	$^{\sim}0.35$ ($p_{T} = 6 \text{ GeV/c}$)
Ghosh et al. PRD 90 (2014) 054018	RHIC, LHC	$0.15 - 0.2$ ($p_T = 9 \text{ GeV/c}$)
Das et al. PRD 94 (2016) 114039	Pb-Pb (0-20%) 5.5 TeV	$^{\sim}0.2$ ($p_{T} = 9 \text{ GeV/c}$)
Plumari et al. Eur. Phys. J. C78 (2018) 348	Pbb-Pb (0-20%) 2.76 TeV	$0-1-0.5$ ($p_T = 8 \text{ GeV/c}$)

Open heavy-flavour R_{AA} hierarchy (II)

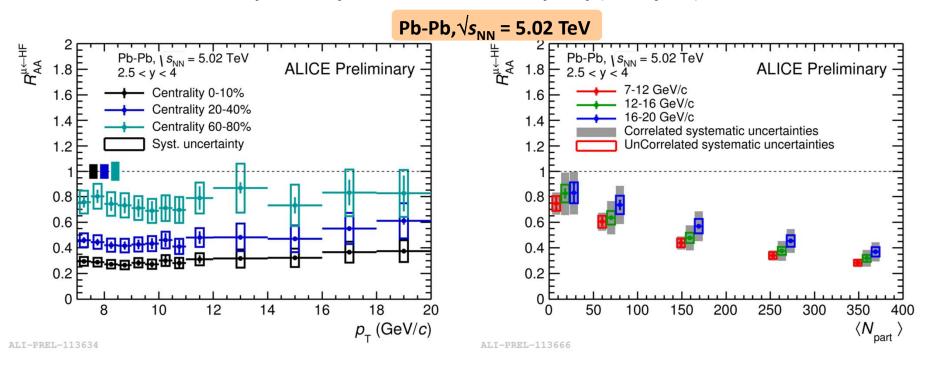
- ☐ Hint of enhanced D+s production compared to non-strange D mesons in central
 - Pb-Pb collisions at 5.02 TeV as expected from models
 - ➤ Hadronisation via coalescence in a strangeness-rich environment?
- \square Hint of a larger R_{AA} for Λ_c^+ in 0-80% than for D mesons in 0-10%
- \square Λ_c +/D⁰ ratio underestimated by models:
 - p_T = 9 GeV/c: **0.15-0.2** at LHC and RHIC (Ghost et al., PRD 90 (2014) 054018) and ~**0.2** in Pb-Pb (0-20%) at 5.5 TeV (Das et al., PRD 94 (2016) 114039); p_T = 8 GeV/c: **0.1-0.2** in Pb-Pb (0-20%) at 2.76 TeV (Plumari et al., Eur. Phys. C 78 (2018) 348)
 - → fragmentation not well understood


Observables

 \square Nuclear modification factor R_{AA}

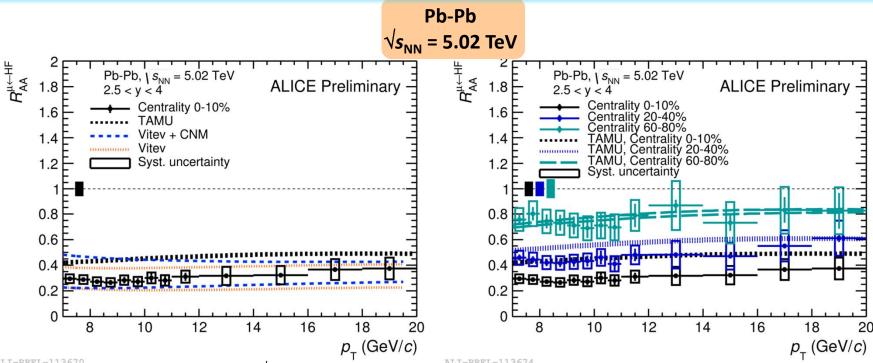
$$R_{\rm AA}(p_{\rm T}) = 1/\langle T_{\rm AA} \rangle \times \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}} \sim \frac{{\rm QCD\ medium}}{{\rm QCD\ vacuum}}$$

☐ Elliptic flow v₂



$$\frac{2\pi}{N} \frac{\mathrm{d}N}{\mathrm{d}\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_n)] \qquad v_n = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

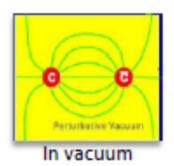
Production of muons from heavy-flavour hadron decays

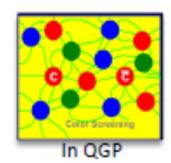


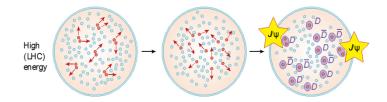
First Run 2 results on open heavy flavours at forward rapidity (2.5 < y < 4) in the muon channel

- □ Production of muons from heavy-flavour hadron decays measured in 5 centrality classes in 0-90% over a wide p_T range
- □ Strong suppression in the 10% most central collisions: factor ~3 for $7 < p_T < 12$ GeV/c
- \square No clear p_T dependence within uncertainties
- ☐ Clear increase of the suppression from peripheral to central collisions
- \square Beauty contribution larger than 50% for $p_T > 5$ GeV/c in pp collisions
 - Beauty suppression at intermediate/high p_T

Muons from heavy-flavour hadron decays at $\sqrt{s_{NN}} = 5.02$ TeV: comparison with models

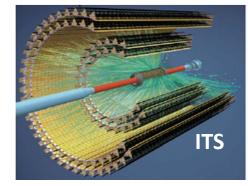

- \square R_{AA} measurements at $\sqrt{s_{NN}} = 5.02$ TeV provide new constraints on energy loss models:
 - Vitev: describe the measured R_{AA} of $\mu \leftarrow HF$ in 2.5 < y < 4 within uncertainties
 - TAMU: tends to overestimate the measured R_{AA} of μ ← HF in 2.5 < y < 4 for central collisions (0-10%) and describe within uncertainties the measurement in semi-central and peripheral collisions (20-40%, 60-80%)</p>

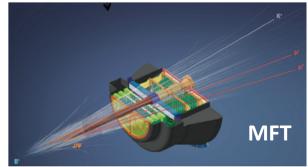

Quarkonium production


- ☐ Colour screening in the QGP
 - → quarkonium suppression

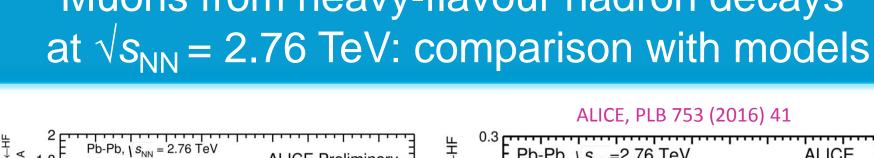
[T. Matsui & H. Satz, PLB 178 (1986) 416]

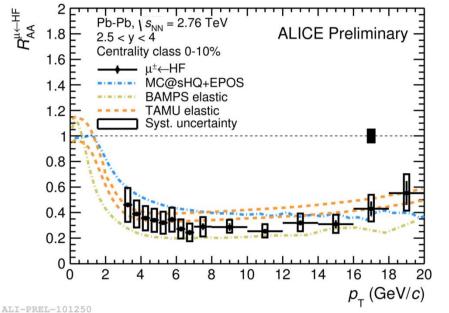
Central A-A collisions		RHIC 0.2 TeV	LHC 2.76 TeV	LHC 5.02 TeV
N _{ccbar} /event	~0.2	~10	~85	~115

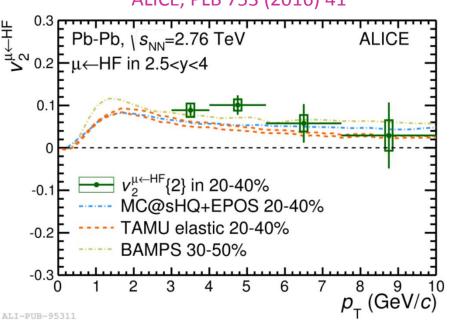

☐ Abundant production of cc at the LHC may lead to a recombination mechanism at hadronization (statistical approach) or in the QGP (kinetic approach) which enhances charmonium production


[P. Braun-Munzinger & J. Stachel, PLB 490 (2000) 196, B. Thews et al., PRC 63 (2001) 054905]

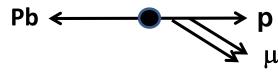
ALICE upgrade

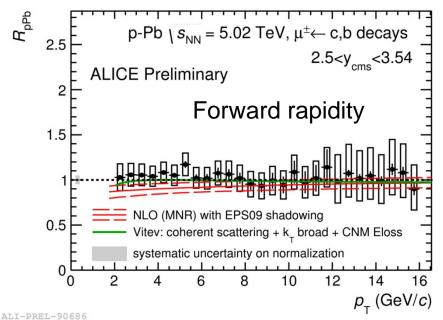



- Major upgrade currently in preparation for LHC Run3 (2021-2023)
 - Ongoing R&D, construction and installation during the second Long Shutdown
 - New conditions with Run 3: Pb-Pb interaction may reach 50kHz (now ~ 8 kHz)
- ☐ Goals of ALICE Run 3:
 - High precision measurements of rare probes with main focus on the low p_T region \rightarrow x 100 larger minimum-bias sample compared to Run 2 (~10¹¹ events)
 - Increase readout rate to 50 kHz, presently limited to ~1 kHz
 - Improvement of pointing resolution at both central and forward rapidity
- □ New Inner Tracking System (ITS)
 - Improved pointing resolution, reduced material budget, faster readout
- New Forward Muon Tracker (MFT)
 - New Silicon tracker, heavy-flavour vertices also at forward rapidity
- New TPC readout chambers based on GEM
- □ Upgraded readout for many detectors,
 Integrated Online-Offline (O²) system,
 New Fast Integration Trigger detector (FIT)

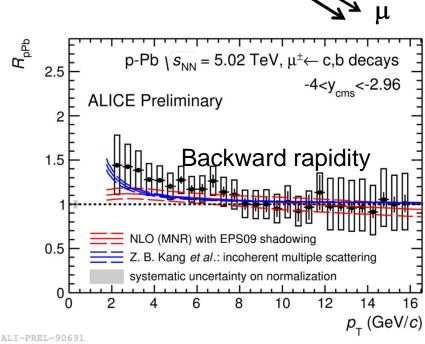


Muons from heavy-flavour hadron decays




- \square R_{AA} in central collisions and v_2 in semi-central collisions reasonably described by models including energy loss in the QGP but not in details
 - > Further constraints to models: comparison with Run 2 measurements

MC@ sHQ+EPOS, Coll + Rad (LPM): Phys. Rev. C 89 (2014) 014905; BAMPS: Phys. Lett. B 717 (2012) 430; TAMU: Phys. Lett. B 735 (2014) 445


Heavy-flavour decay muons: R_{pPb} vs p_{T}

- \square R_{pPb} at forward rapidity is consistent with unity and, at backward rapidity is slightly larger than unity in $2 < p_T < 4$ GeV/c and close to unity at higher p_T
- □ Cold nuclear matter effects are small
- R_{pPb} described by perturbative QCD calculations implementing cold nuclear matter effects

pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295, EPS09: K. J. Eskola et al., JHEP 04 (2009) 065 R. Sharma et al., Phys. Rev. C 80 (2009) 054902; Z.B. Kang et al., Phys. Lett. B 740 (2015) 23