

Rare decays, radiative decays and b → sll transitions at LHCb

Titus Mombächer

TU Dortmund

on behalf of the LHCb collaboration

30th Rencontres de Blois, 05.06.2018

Rare decays

- Rare decays: small/vanishing Standard Model (SM) predictions
 - Heavy suppression in Flavour Changing Neutral Current (FCNC) processes or even forbidden in the SM
 - → Sensitive to New Physics (NP) processes at tree/loop-level
 - Searches complementary to direct NP searches → higher energy scales testable
- Look for NP effects in
 - (Differential) branching ratios
 - Angular distributions

Rare decays

- Rich field of different analyses, will only cover a few of the latest today
 - $B_{d.s}^{0} \to H^{(')}: B_{d.s}^{0} \to e\mu$
 - Anomalies in differential branching fractions of b→ sll transitions
 - b→dll transitions: $B^+ \to \pi^+ \mu \mu$, $\Lambda_b \to p \pi \mu \mu$, $B_s^0 \to K^{*0} \mu \mu$
 - c→ull transitions: $D^0 o hh\mu\mu$, $\Lambda_c^+ o p\mu\mu$
 - s→dll transitions: $K_S^0 \rightarrow \mu\mu$, $\Sigma_C^+ \rightarrow p\mu\mu$
- Many more have been performed and are ongoing
 - → See also the talk on Lepton Flavour Universality measurements by Anna Lupato
- Results shown use 3 fb⁻¹ data from Run 1 (few exceptions)

b→sll transitions: $B_{d,s}^0 \rightarrow e\mu$

[PRL118 251802 (2017)]

- $B_{d,s}^0 \to e\mu$ forbidden in the SM \to sensitive to NP mediators
 - Large lepton flavour violation expected in many NP scenarios
 - (e.g. leptoquarks, SUSY) ightharpoonup enhancement of $B^0_{d.s}
 ightharpoonup e \mu$
- Update of the measurement using the full $3 \, \mathrm{fb}^{-1}$ of Run 1
 - Improvements: larger dataset, BDT based selection
 - Analysis based on $B^0_{d.s} o \mu \mu$ analysis [PRL 118 (2017) 191801]
- Splitting the dataset in
 - 7 Bins of the (flattened) BDT response
 - With/without applied bremsstrahlung correction for the electron

$${\cal B}(B^0_s o e^\pm\mu^\mp) < 6.3 imes 10^{-9}$$
 at 95% CL ${\cal B}(B^0_d o e^\pm\mu^\mp) < 1.3 imes 10^{-9}$ at 95% CL

→ 2-3x improvement wrt to old analysis!

Diff. branching fractions in b→sll

Blois 2018

Rare decays, radiative decays and b→sll transitions

Diff. branching fractions in b→sll

b→dll transitions

- Further CKM suppression in the SM by $|V_{td}/V_{ts}|^2$ compared to b \rightarrow sII
- Similar but complementary information
- b→sll transitions show consistent pattern of deviations → same anomalies in b→dll?
- Combination with b \rightarrow sll transitions and form factors to determine $|V_{td}/V_{ts}|$ \rightarrow Constraints on the Minimal Flavour Violation hypothesis [Feldmann and Mannel, JHEP 02 (2007) 067]

[Buras et al., PLB 500 (2001) 161]

Very rare processes, on the brink of observation
 → more data required for angular analyses

b→dll transitions

- Observed $B^+ o \pi^+ \mu \mu$ and used for determining $|V_{td}/V_{ts}|$
- Also observation of baryonic $\Lambda_b \to p\pi^-\mu\mu$
 - → complicated hadronic system
 - → form factors not available

Combine with $B^+ \to K^+ \mu \mu$ and lattice to get $\left| \frac{V_{td}}{V_{ts}} \right| = 0.201 \pm 0.020$ Du et al., [PRD 93 (2016) 034005]

$$B_s^0 o \overline{K^{*0}} \mu \mu$$

[arXiv:1804.07167]

- CKM suppressed version of $B_d^0 o K^{*0} \mu \mu$
- Potential to measure $|V_{td}/V_{ts}|$ (as in $B^+ \to \pi^+ \mu \mu/B^+ \to K^+ \mu \mu$)
- Use $q^2 \in [0.1, 19.0] \text{GeV}^2/c^4$ and veto J/ψ and $\psi(2S)$ regions
- First evidence: 3.4σ at $3 \, \mathrm{fb}^{-1}$ Run 1 and $1.6 \, \mathrm{fb}^{-1}$ Run 2 data!

$$\mathcal{B}(B_s^0 \to \overline{K^{*0}}\mu\mu) = (2.9 \pm 1.0(\text{stat.}) \pm 0.2(\text{syst.}) \pm 0.3(\text{norm.})) \times 10^{-8}$$

T. Mombächer

Blois 2018

Rare decays, radiative decays and b→sll transitions

c→ull transitions: $D^0 \rightarrow hh\mu\mu$

- [PRL 119 181805 (2017)]
- GIM suppression
- Long distance contributions are dominating
- 4 particles in the final state → angular observables will allow disentangling long and short distance
- First steps taken by observing $D^0 \to hh\mu\mu$ (2 fb⁻¹ Run 1 data)
- Detached D^0 from $D^{*+} \rightarrow D^0 \pi^+$
- Normalising to $D^0 \to K\pi\mu\mu$
- Divide into 5 regions of dimuon mass
 - → Rarest charm decays ever observed!

 $[\]mathcal{B}(D^0 \to \pi\pi\mu\mu) = (9.64 \pm 0.48(\text{stat.}) \pm 0.51(\text{syst.}) \pm 0.97(\text{norm.})) \times 10^{-7}$ $\mathcal{B}(D^0 \to KK\mu\mu) = (1.54 \pm 0.27(\text{stat.}) \pm 0.09(\text{syst.}) \pm 0.16(\text{norm.})) \times 10^{-7}$

T. Mombächer

Blois 2018

Rare decays, radiative decays and b→sll transitions

Angular and CP asymmetries in

$D^0 \rightarrow hh\mu\mu$

NEW!

LHCb-PAPER-2018-020

- First of such a measurement in a rare charm decay!
- Use 5 fb⁻¹ data from years 2011-2016
- Measure asymmetries in low dimuon mass, ρ/ω -region and ϕ -region

$$A_{\text{FB}}(D^0 \to \pi\pi\mu\mu) = (3.7 \pm 3.3(stat.) \pm 0.6(syst.))\%$$

 $A_{\phi}(D^0 \to \pi\pi\mu\mu) = (-0.6 \pm 3.3(stat.) \pm 0.6(syst.))\%$
 $A_{\text{CP}}(D^0 \to \pi\pi\mu\mu) = (4.9 \pm 3.8(stat.) \pm 0.7(syst.))\%$
 $A_{\text{FB}}(D^0 \to KK\mu\mu) = (0 \pm 11(stat.) \pm 2(syst.))\%$
 $A_{\phi}(D^0 \to KK\mu\mu) = (9 \pm 11(stat.) \pm 1(syst.))\%$
 $A_{\text{CP}}(D^0 \to KK\mu\mu) = (0 \pm 11(stat.) \pm 2(syst.))\%$

Search for $\Lambda_c^+ \to \rho \mu \mu$

[PRD 97 (2018) 091101(R)]

- Rare baryonic c→ull FCNC process
- Long distance dominated
- Normalise to the resonant $\[\wedge_c^+ o p\phi \]$ mode
- Two-staged MVA selection
- Previous world-best limit (BaBar):

$$\Lambda_c^+ o
ho \mu \mu < 4.4 imes 10^{-5} \; (90\% \; {
m CL}) \; \; {
m [PRD \, 84 \, (2011) \, 072006]}$$

→ Improve world-best limit on $\Lambda_c^+ \to \rho \mu \mu$ by O(100):

$$\mathcal{B}(\Lambda_c^+ \to p\mu\mu) < 9.6 \times 10^{-8} \ (95\% \ \text{CL})$$

• First observation of $\Lambda_c^+ \to p\omega$!

$$\mathcal{B}(\Lambda_c^+ \to p\omega) = (9.4 \pm 3.2 (\text{stat.}) \pm 1.0 (\text{syst.}) \pm 2.0 (\text{norm.})) \times 10^{-4}$$

$s\rightarrow dll: K_S^0 \rightarrow \mu\mu$

[Eur. Phys. J. C, 77 10 (2017) 678]

- Very sensitive to NP (e.g. light scalars)
- 3 fb⁻¹ update wrt previous measurement using 1 fb⁻¹ Run 1
- K_S^0 abundant in LHCb ($\mathcal{O}(10^{13})$)
 - Low dimuon mass
 - → Low trigger efficiency improved by removing mass requirement
 - Two MVA discriminants to remove combinatorial and $K_S^0 o \pi\pi$ backgrounds

→
$$\mathcal{B}(K_S^0 \to \mu\mu) < 1.0 \times 10^{-9} \text{ (95\% CL)}$$

- → Improve the limit by O(10)!
 - SM prediction: $\mathcal{B}(K_S^0 \to \mu\mu) = (5.0 \pm 1.5) \times 10^{-12}$ [Isidori and Unterdorfer, JHEP 01 (2004) 009]

$\Sigma^+ \to p \mu \mu$

[PRL 120 (2018) 221803]

- Baryonic s→ dll process
- Dominated by long distance contributions
- Normalise to $\Sigma^+ \to \rho \pi^0$
- Excess of $\Sigma^+ \to \rho\mu\mu$ found at 4.1σ
 - Consistent with the SM
 - No significant dimuon resonance structure observed

$$\rightarrow \mathcal{B}(\Sigma^+ \to p\mu\mu) = (2.2^{+1.8}_{-1.3}) \times 10^{-8}$$

→ rules out dimuon resonance as indicated by HyperCP: excess of three candidates with close dimuon masses [PRL 94 (2005) 021801]

→
$$\mathcal{B}(\Sigma^+ \to pX^0(\to \mu\mu)) < 1.4 \times 10^{-8} \ (90\% \ \text{CL})$$

220

230

240

250

 $m_{u^+u^-}$ [MeV/ c^2]

Conclusion

- Rare decays provide powerful tests of the SM and NP scenarios
- Many analyses are carried out at LHCb
 - Providing stringent constraints on NP models
 - Probing a variety of q→q'll transitions
 - Measurements in b→sll seem to favour a modification of the SM
 - Will we find similar anomalies in b→dll transitions?
- X3 more data on tape than yet analysed!

LHCb Integrated Recorded Luminosity in pp, 2010-2018

Backup

$B_{d,s}^0 \to \mu\mu$

[PRL 118, 191801 (2017)]

- "Golden Channel", loop and helicity suppressed in the SM
- Clean both experimentally and theoretically
- Search with $3 \, \text{fb}^{-1} \, \text{Run 1}$ and $1.4 \, \text{fb}^{-1} \, \text{Run 2}$ data
 - First single experiment observation of $B_s^0 o \mu\mu$ (7.8 σ)
 - Measurement of effective lifetime in $B_s^0 \to \mu\mu$
 - Limit on $\mathcal{B}(B_d^0 o \mu \mu)$
- Results consistent with SM
 - → stringent constraints on NP models

$$\mathcal{B}(B_s^0 o \mu \mu) = (3.0 \pm 0.6 ({\rm stat.})_{-0.2}^{+0.3} ({\rm syst.})) \times 10^{-9}$$
 $\tau(B_s^0 o \mu \mu) = 2.04 \pm 0.44 ({\rm stat.}) \pm 0.05 ({\rm syst.}) \; {\rm ps}$
 $\mathcal{B}(B_d^0 o \mu \mu) < 3.4 \times 10^{-10} \; (95 \% \; {\rm CL}) \; {\rm cKM} \atop {\rm suppressed}$

$B_{d.s}^0 \to \tau \tau$

[PRL118, 251802 (2017)]

- Helicity suppression lifted due to the large m_{τ} , but experimentally challenging:
 - Complementary measurement to $B_{d,s}^0 o \mu \mu$
 - Very interesting in view of LFU results (talk by A. Lupato)

$$\mathcal{B}_{\rm SM}(B_s^0 \to \tau \tau) = (7.73 \pm 0.49) \times 10^{-7}$$
 $\mathcal{B}_{\rm SM}(B_d^0 \to \tau \tau) = (2.22 \pm 0.19) \times 10^{-8}$
[PRL112 101801(2014)]
Bobeth et al.

$$\mathcal{B}(B_s^0 \to \tau \tau) < 6.8 \times 10^{-3} \text{ at } 95\% \text{ CL}$$

 $\mathcal{B}(B_d^0 \to \tau \tau) < 2.1 \times 10^{-3} \text{ at } 95\% \text{ CL}$

Angular and CP asymmetries in

 $D^0 \rightarrow hh\mu\mu$

$$A_{\text{CP}} = \frac{\Gamma(D^0 \to hh\mu\mu) - \Gamma(\overline{D^0} \to hh\mu\mu)}{\Gamma(D^0 \to hh\mu\mu) + \Gamma(\overline{D^0} \to hh\mu\mu)}$$

$$A_{\mathsf{FB}} = \frac{\Gamma(\cos\theta_{\mu} > 0) - \Gamma(\cos\theta_{\mu} < 0)}{\Gamma(\cos\theta_{\mu} > 0) + \Gamma(\cos\theta_{\mu} < 0)}$$

$$A_{\phi} = \frac{\Gamma(\sin 2\phi > 0) - \Gamma(\sin 2\phi < 0)}{\Gamma(\sin 2\phi > 0) + \Gamma(\sin 2\phi < 0)}$$

