
Anna Lupato On behalf of the LHCb Collaboration

University of Padova & INFN XXXth Rencontres de Blois Chateau de Blois, June 3-8,2018

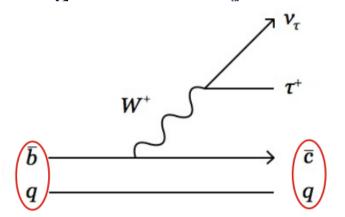
Lepton Flavour Universality

- In the Standard Model the electroweak coupling of the gauge bosons to leptons is independent of the lepton flavour:
 - the branching fractions of decays involving leptons do not depend on the lepton kind: the only differences between e, μ and τ are the phase space and helicity-suppressed contributions.

→ Any violation of lepton universality would be a clear sign of physics beyond the Standard Model

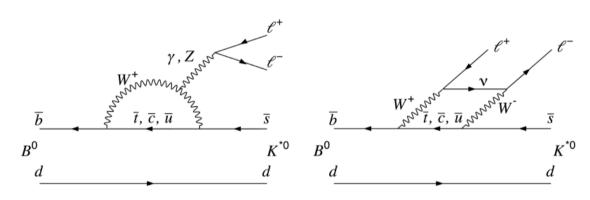
- Over the years LFU has been tested in several systems providing very strong limit:
 - More significant tests involve the 1° and 2° quarks and leptons families.
- A large class of SM extensions contain new interactions that involve third generation of quarks and leptons
 - Higgs-like charged scalar: H[±], new vectors coupled to SM Higgs doublet, leptoquarks, 2 Higgs doublets model (2HDM type II or III)...

Semileptonic Decays



- The contributes to decay rate can be factorized in weak and strong part
 - The theoretical calculation are simplified.

$$\frac{d\Gamma(B \rightarrow X l \nu)}{dq^2} \propto G_F^2 |V_{bq}|^2 |f(q^2)^2$$


• The lepton universality ratios further cancel the theoretical uncertainties

Charged current decays: $b \rightarrow c l v$

• Tree level, large BR

Neutral current decays: $b \rightarrow s l l$

• FCNC, Loop diagram, low BR

b→clv: R(D*)

$$R(D^*) = \frac{\mathcal{B}(B^0 \to D^{*-}\tau^+\nu_{\tau})}{\mathcal{B}(B^0 \to D^{*-}\mu^-\nu_{\mu})}$$

- Tree level decays → large branching fractions.
- Cancel QCD uncertainties.
- Precise prediction: $R(D^*) = 0.252 \pm 0.003$ (PRD85 (2012) 094025).
- R(D*) sensitive to any physics model favoring 3rd generation leptons for example leptoquarks or charged Higgs.

$$\overline{B}\{\begin{array}{c} W^-/H^- \\ \overline{q} \end{array} \\ \overline{B}\{\begin{array}{c} b \\ \overline{q} \end{array} \}D^{(*)}$$

- LHCb measurement:
 - R(D*) where $\tau \to \mu \nu_{\mu} \nu_{\tau}$ (PRL115,111803(2015))
 - R(D*) where $\tau \to \pi\pi\pi(\pi^0)\nu_{\tau}$ (Phys. Rev. Lett. 120, 171802 (2018))

$R(D^*)$ with hadronic τ decays

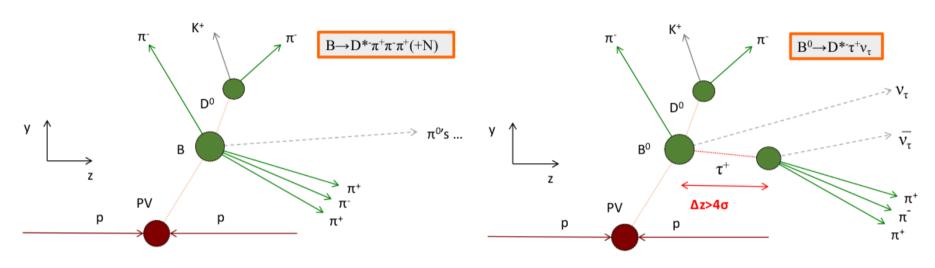
PRL115,111803(2015)

- Final states: $D^{*-} \rightarrow \overline{D}^0 (\rightarrow K^+ \pi^-) \pi^- \quad \tau \rightarrow \pi \pi \pi (\pi^0) \nu_{\tau}$
 - + good tau vertex reconstruction
 - large hadronic backgrounds:
 - B \rightarrow D* 3 π X (BF \sim 100 \times signal)
 - B \rightarrow D* D_s X (BF \sim 10x signal)
- R(D*) is obtained by

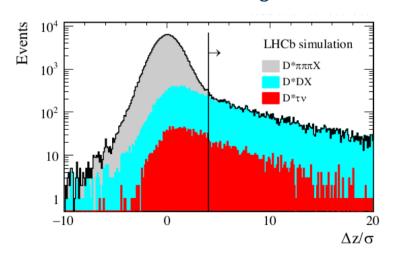
$$\mathsf{R}(D^*) = \mathsf{K}(D^*) \times \frac{Br(B^0 \to D^{*-} 3\pi)}{Br(B^0 \to D^{*-} \mu^+ \nu_{\mu})} \ ^{\text{[$^{\sim}4\%$ precision, PDG2017]}} \ _{\text{[$^{\sim}2\%$ precision, HFLAV 2016]}}$$

• the measured ratio is K(D*):

$$\mathsf{K}(D^*) \equiv \frac{\mathit{Br}(B^0 \to D^{*-}\tau^+\nu_\tau)}{\mathit{Br}(B^0 \to D^{*-}3\pi)} = \frac{\mathit{N}_{D^*\tau\nu_\tau}}{\mathit{N}_{D^*3\pi}} \times \frac{\varepsilon_{D^*3\pi}}{\varepsilon_{D^*\tau\nu_\tau}} \times \frac{1}{\mathit{Br}(\tau^+ \to 3\pi(\pi^0)\overline{\nu}_\tau)}$$


- $N_{D^{*3\pi}}$ from a unbinned likelihood fit to m(D* $\pi\pi\pi$).
- $N_{D^*\tau\nu}$ number of signal events.
- Signal and normalization have the same visible final states → most of the systematic uncertainties cancel in the ratio (PID, trigger and selection).

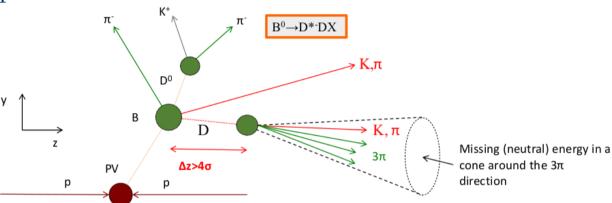
$H_b \rightarrow D*3\pi X$



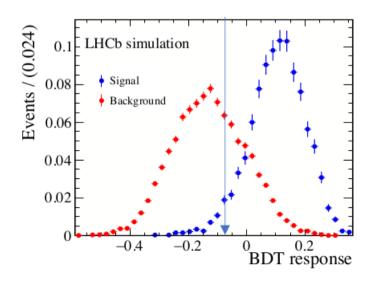
• The main background is due to $H_b \to D*3\pi X$ (BF ~ 100x signal)

PRL115,111803(2015)

• Suppressed by requiring the τ vertex to be downstream wrt B vertex along beam direction with a 4σ significance


- Reduction of 3 orders of magnitude
- Signal efficiency = 35 %

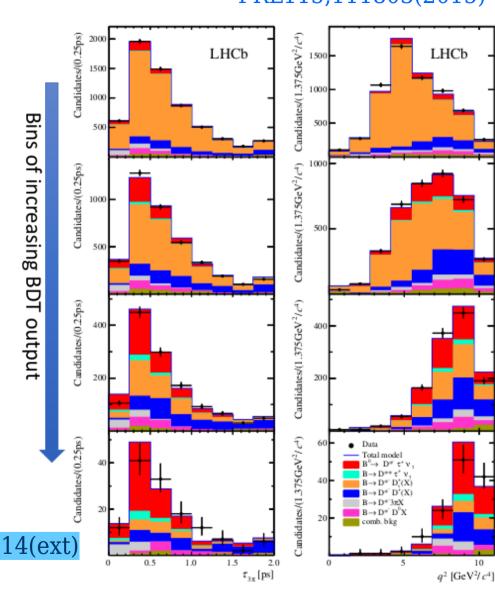
Double charmed background



PRL115,111803(2015)

- Remaining B meson double charmed decays are of type B \rightarrow D* D(3 π Y)X.
- Veto on candidates with extra charged particles compatible with B and 3π vertices
- BDT is based on
 - Variables aimed to isolate other charge tracks;
 - Neutral isolation BDT;
 - Different resonant structure of $D*3\pi$ system;

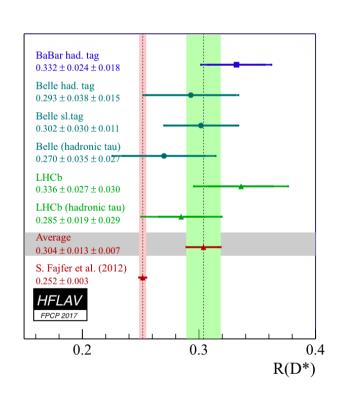
• High BDT region is used to extract the signal: BDT > -0.075.


Fit procedure

PRL115,111803(2015)

• A 3D extended maximum likelihood template fit is performed on data to extract signal yield:

- BDT output
- τ decay time
- q²
- run1 data, 3 fb-1 of data.
- $N_{D^*_{TV}} = 1300 \pm 85$
- $K(D^*) = 1.93 \pm 0.13(stat) \pm 0.13(sys)$
- $R(D^*) = 0.285 \pm 0.019(stat) \pm 0.025(sys) \pm 0.014(ext)$

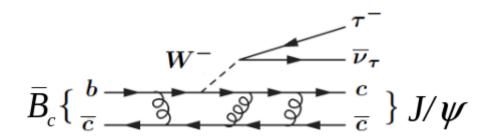

R(D*) measurements combination



9

- $R(D^*)_{HADRONIC\ LHCb} = 0.285 \pm 0.019\ (stat) \pm 0.025\ (syst) \pm 0.014\ (ext)$
- $R(D^*)_{MIIONIC I.HCb} = 0.336 \pm 0.027(stat) \pm 0.030(syst)$
- LHCb average: $R(D^*) = 0.306 \pm 0.027$

- \rightarrow 2.1 σ above the SM prediction
- HFLAV world average: $R(D^*) = 0.304 \pm 0.015$ $\rightarrow 3.4 \sigma$ above the SM
- HFLAV average of R(D) and R(D*) is 4.1 σ from the SM prediction

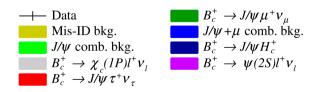

b→clv: R(J/ψ)

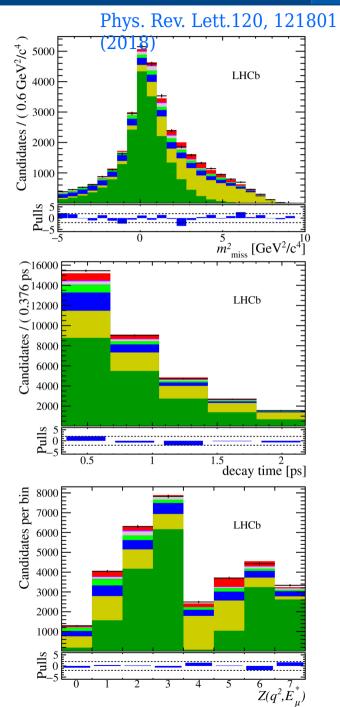
$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_{\tau})}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})}$$

Phys. Rev. Lett.120, 121801 (2018)

- Additional handle for investigating:
 - The source of theoretical and experimental uncertainties;
 - The origin of the lepton universality coupling.
- Similar to R(D*) measurement.
- Small hadronisation factor: B_c meson are produced 200 times less than B⁰.
- \bullet B decay form factors not yet unconstrained experimentally
 - → prediction of R(J/ ψ) affected by form factor uncertainties: R(J/ ψ) ∈ [0.25,0.28] [PLB452 (1999) 120, arXiv:0211021, PRD73 (2006) 054024, PRD74 (2006) 074008]

b→clv: R(J/ψ)


Phys. Rev. Lett.120, 121801 (2018)


- Final states: $J/\psi \rightarrow \mu^+ \mu^- \quad \tau \rightarrow \mu \nu_{\mu} \nu_{t}$
- Identical reconstructed final state for semimuonic and semitauonic channel.
- In the B rest frame, four kinematics variables allow to distinguish B $\rightarrow J/\psi \nu$ and B $\rightarrow J/\psi \mu \nu$:
 - $m_{\text{miss}}^2 = (p_{\text{Bc}} p_{J/\psi\mu})^2$
 - $q^2 = (p_{Bc} p_{I/\psi})^2$
 - E^*_{μ} : energy of unpaired muon in the B_c centre of mass frame
 - $\tau_{\rm Bc}$

$\mathbf{b} \rightarrow \mathbf{clv} : \mathbf{R}(\mathbf{J}/\psi)$

- Main background:
 - B \rightarrow J/ ψ h, h misID as μ .
- Maximum Likelihood Fit to binned m^2_{miss} , τ_{Bc} and $Z(q^2,E^*_{\ \mu})$ distributions with 3D templates.
- run1 data, 3 fb-1 of data.
- $R(J/\psi) = 0.71 \pm 0.17(stat) \pm 0.18(sys)$ $\rightarrow 2\sigma$ above the SM prediction
- First evidence for the decay $B_c \rightarrow J/\psi \tau \nu$.
- Main systemtics due to the form factors and the size of the simulation sample.

b→sll as probe of NP

- Flavour Changing Neutral Current transitions → proceed only via loop diagrams
- Suppressed in SM → more sensitive to NP
- NP could couple in a non universal way to the different lepton families.
- Comparing the rates of B \rightarrow H $\,\mu^ \,\mu^+$ and B \rightarrow H e- e+ allows precise test of lepton flavour universality

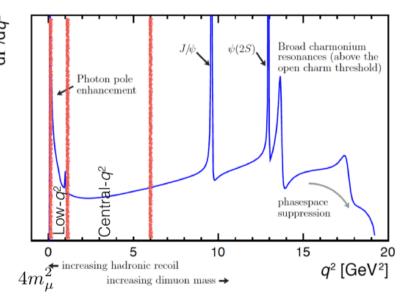
$$R_{\rm H} \left[q_{\rm min}^2, q_{\rm max}^2 \right] = \frac{\int_{q_{\rm min}^2}^{q_{\rm max}^2} dq^2 \frac{d\Gamma(B \to H\mu^+\mu^-)}{dq^2}}{\int_{q_{\rm min}^2}^{q_{\rm max}^2} dq^2 \frac{d\Gamma(B \to He^+e^-)}{dq^2}}, \quad q^2 = m^2(\ell\ell)$$

$$H = K, K^*, \phi, \dots$$

- The hadronic uncertainties in the theoretical predictions cancel.
- SM expectation: $R_H = 1$, neglecting lepton masses.
- LHCb measurements:
 - R_K: Phys. Rev. Lett. 113, 151601 (2014)
 - R_{v*}: JHEP 08 (2017) 055

R(K*)

$$R_{K^{*0}} \left[q_{\min}^2, q_{\max}^2 \right] = \frac{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B^0 \to K^{*0} \mu^+ \mu^-)}{dq^2}}{\int_{q_{\min}^2}^{q_{\max}^2} dq^2 \frac{d\Gamma(B^0 \to K^{*0} e^+ e^-)}{dq^2}}, \quad K^*(892)^0 \to K^+ \pi^-$$


• The double ratio of rare to J/psi channel is used to reduce the systematic uncertainties:

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0}\mu^+\mu^-)}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to \mu^+\mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0}e^+e^-)}{\mathcal{B}(B^0 \to K^{*0}J/\psi(\to e^+e^-))}$$

• The measurement is performed in two bins:

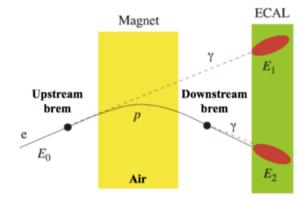
• Low q² bin: [0.0045, 1.1] GeV²

• central q² bin: [1.1, 6] GeV²

- Extremely challenging due to significant differences in the way μ and e interact with the detector:
 - bremsstrahlung
 - trigger

JHEP 08 (2017) 055

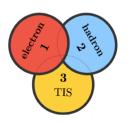
Bremsstrahlung and Trigger


JHEP 08 (2017) 055

Electron reconstruction is more difficult than muon due to bremsstrahlung.

• The electrons emit a large amount of bremsstrahlung that results in a degraded B

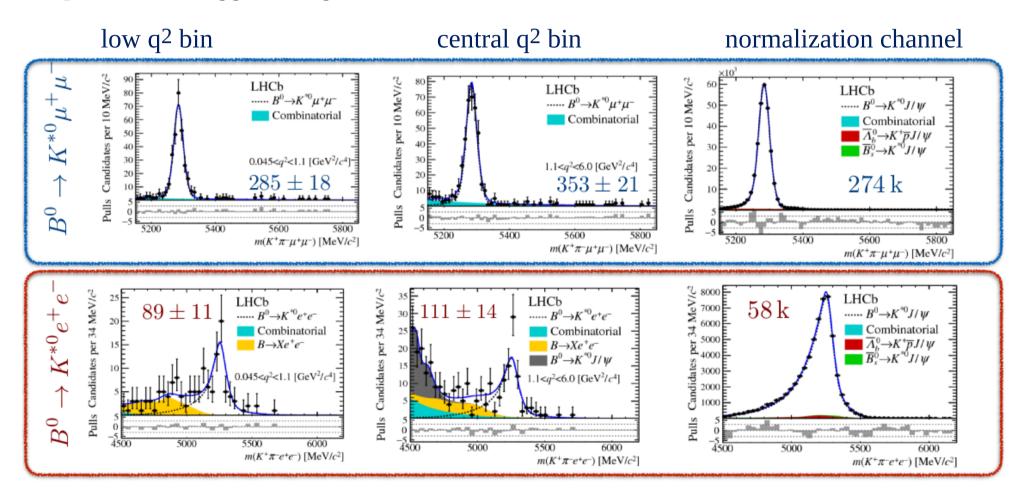
momentum and mass resolution.


 Recovery momentum procedure: extrapolation of the electron track upstream and addition of the bremsstrahlung calorimeter cluster to electron momentum.

• Due to higher occupancy of the calorimeters compared to the muon stations, hardware trigger thresholds on the electron $\mathbf{E}_{_{\!\!\!\mathsf{T}}}$ are higher than on the muon $\mathbf{p}_{_{\!\!\!\mathsf{T}}}$

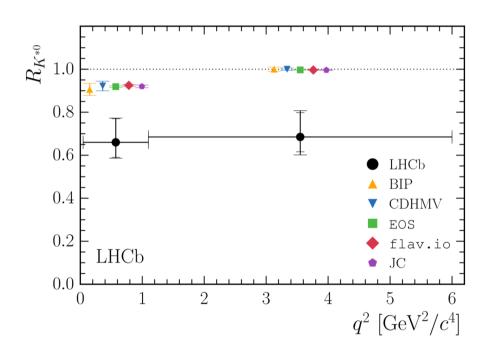
(L0 Muon, $p_{_{\rm T}} > 1.5, 1.8 \text{ GeV}$)

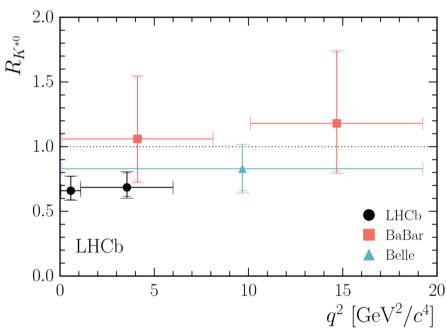
- → partial loss of electron signal
- → to partially mitigate this effect 3 exclusive trigger categories are considered:



Fit Procedure

JHEP 08 (2017) 055


- Fit to B mass in lower and central dilepton transferred momentum region.
- Simultaneous fit to resonant and not resonant data, particularly for the electron decays splitted in 3 trigger categories.



R(K*) result

- Precision of the measurement driven by statistics of electron samples.
- Compatibility with the SM:
 - low q² bin: 2.1-2.3 standard deviation;
 - central q² bin: 2.4-2.5 standard deviation.

- BaBar: PRD 86 (2012) 032012
- Belle: PRL 103 (2009) 171801
- LHCb: JHEP 08 (2017) 055

Conclusion

- Lepton Flavour Universality test are a clean probe to NP, completing the direct researches.
- Both in tree and loop level semileptonic B decays present anomalies with respect to the SM.
- All measurements presented are performed using run 1 data and are dominated by statistical error → run 2 LHC data.
- The hadronic LHCb R(D*) measurement is one of the best single measurements having the smallest statistical error. HFLAV average of R(D) and R(D*) is 4.1 σ from the SM prediction.
- Recent 2σ discrepancy in the same direction observed by LHCb in $B_c \rightarrow J/\psi \tau \nu$.
- The compatibility of $R(K^*)$ result with respect to the SM predictions is of 2.2-2.5 standard deviations in each q^2 bins. It is particularly interesting given a similar behavior in R(K).
- Other ongoing R measurement at LHCb:
 - Tree: R(D), R($\Lambda_c^{(*)}$),...
 - Loop: $R(K_{\varsigma})$, $R(\Phi)$,...

Thank you for your attention