30th Rencontres de Blois

CLE PHYSICS AND COSMOLOGY

B

Belle II status and early physics

D

- * Experiment schedule
- On-going Phase 2 run
- Beam induced background
- First collisions in Belle II
- * Physics at Belle II
- Opportunities of early scientific impact.
- Conclusion

Isabelle Ripp-Baudot IPHC Strasbourg on behalf of the Belle II collaboration

Université

The Belle II experiment

* Legacy of B factories, BaBar and Belle:

- * Precise measurement of CPV in B system.
- Nobel prize 2008 to Kobayashi, Maskawa (& Nambu).
- Belle II builds on the excellent B factory experience, shifting focus to search for BSM physics:
 - Extremely precise measurements in the quark and charged lepton sectors: increased statistics needed, current dataset×50.
 - Quantum manifestation of NP:
 potential higher NP mass sensitivity than Energy Frontier.

- Asymmetric e⁺e⁻ circular collider.
- $E_{\text{collision}} = m_{Y(4S)}$ and from Y(1S) to ~ Y(6S).
- New nano-beam collision scheme: instantaneous luminosity world record ×40
 → 8×10³⁵ cm⁻² s⁻¹.

collision point

Belle II detector

Electron-Positron

linear accelerator

Hosted at KEK, Tsukuba.

3 km ring

Positron damping ring

e⁺ - 4 GeV - 3.6 A

vertical beam size

 $\sigma_v^* \sim 50 \text{ nm}$

e⁻ - 7 GeV - 2.6 A

- * SuperKEKB switched on in Jan. 2016: single beams circulated during 5 months (BEAST Phase 1).
- * First collisions delivered in Apr. 2018: BEAST Phase 2 commissioning, March-July 2018.
- Start of physics run scheduled early 2019.
 - Target integrated luminosities:
 - * 2019-20: 1 ab^{-1} > present dataset.
 - * 2021: 10 ab⁻¹.
 - * 2024: 50 ab⁻¹
 - → SuperKEKB is a B-D-τ Factory:
 55×10⁹ BB̄,
 45×10⁹ τ⁺τ⁻,
 65×10⁹ cc̄.

On-going Phase 2 run

- Phase 2 data taking:
 - * March-July 2018.
 - First collisions delivered on April 26.
- Increasing the luminosity:
 - Fine tune beam parameters up to 10³⁴ cm⁻² s⁻¹.
- Belle II commissioning:
 - Belle II at interaction point, w/o vertex detector.
 - Operation of detector and DAQ.
 - * Performances: particle rediscovery (V0, π^0 , ...), counting (luminosity, B, ...), lepton-id (J/ ψ →ee, $\mu\mu$) and K/ π -id (D^{*+}→D⁰ (D⁰→K⁻ π^+) π^+), ...

BEAST SuperKEKB induced background study:

- Insure safe vertex detector operation.
- * Give feedback to machine: increase luminosity while keeping BG under control.
- Validate BG simulation and extrapolate of over ~2 orders of magnitude in luminosity.

Physics with early data:

- ☆ ~20 fb⁻¹ and w/o vertex detector.
- Light NP searches (dark photons, ...), quarkonium studies, ...

- Success of Belle II physics program relies on impact of beam induced background:
 - Possible radiation damage.
 - Possible degraded physics performances due to high detector occupancy.
- BEAST BG study, in 2 Phases:
 - Phase 1, Feb.-June 2016:

Illustration of impact from beam induced BG

- * Belle II not at IP, no solenoid, no final focus, dedicated sensors in place of Belle II.
- * Circulation of individual beams: study of single beam BG, published in NIM A 2018: arXiv:1802.01366.
- Phase 2, March-July 2018:
 - * Belle II @IP, dedicated sensors in place of vertex detector (1 phi-module of PXD+SVD installed).
 - Collisions: study of single beam & beam-beam BG.

Breaking news: first collisions in Belle II (1)

April 26, 2018

All Belle II sub-detectors register collisions.

- Collision tuning to reach 10³⁴ cm⁻² s⁻¹ adiabatically (starting e.g. from 4.7×10³² cm⁻² s⁻¹, as of May 5):
 - ★ Squeeze β_y^* = 8mm → 3 mm (final goal → 2 mm).
 - * Increase I_± = 250 mA / 220 mA \rightarrow 1 A / 0.88 A.
 - * Increase beam parameter $\xi_{\pm y} \sim 0.014 \rightarrow 0.03$.
 - * Increase number of bunches = $600 \rightarrow 1576$.

Improving every day!

Physics at Belle II

hybrid

glueball

Plethora of quarkonium-like states observed in the last decade: *

- Belle II features unique skills for further bottonium- and charmonium-like characterisation: *
 - Various production modes, e.g. of charmonia: ISR, B-decays, two-photon, double-charmonium.
 - Energy scans at / above / below thresholds, from Y(1S) to Y(6S), possibly 11.35 GeV ($\Lambda_b \Lambda_b$ threshold), * 11.5-11.6 GeV (partners of X(3872) and $Z_{b}(10610)$, $Z_{b}(10650)$).
 - Many properties can be measured: absolute and inclusive branching ratios, angular distributions, spin-* parity, line shapes, final states involving neutrals, ...
 - Very small existing datasets: increased stat.×10, 10 fb⁻¹ per 10 MeV-scan point, 500 fb⁻¹ at each new * vector state.

→ opportunity for Belle II of a possible unique early scientific impact.

- * Light dark matter and light mediator searches in Belle II:
 - * Dark photons, dark higgs, axion-like particles (ALPs), mass scale ~GeV or sub-GeV.
 - ♦ Production, e.g.: $e^+e^- \rightarrow M+X$, $e^+e^- \rightarrow Y(ns) \rightarrow M+X$, $e^+e^- \rightarrow B+X \rightarrow K+M+X$.
- * Example: on-shell dark photon decaying to invisible DM:
 - Signal: single, mono-energetic, high-E photon & peak in recoil mass.
 - * Single Photon trigger with 1 GeV threshold.

 $\begin{array}{c}
\circ & 5 \\
-5 \\
0 \\
-5 \\
0 \\
-5 \\
0 \\
1 \\
2 \\
3 \\
B2TIP document \\
E_{rec} [MeV]
\end{array}$

×10[°]

Signal example $m_{A} = 7 \text{ GeV}$

8⊢

Entries / Bin

- Particularly relevant with Phase 2 data:
 - Low luminosity and lower beam background allow to open up triggers.
 - * Small dataset can still give world best sensitivity.

hermetic than BaBar

Belle II has started successfully taking data.

- Belle II will play a key role in particle physics:
 - Accumulated experience from Belle & BaBar.
 - Unique skills for various measurements.
 - Good opportunities of early scientific impact.
 - Huge dataset of 50 ab⁻¹: many measurements will start to be syst. limited
 - → lots of work ahead!

- Expected experimental performances often improve w.r.t. Belle despite 20× higher beam induced background and lower boost.
- Looking forward to the next decade of exciting Belle II results!
 Stay tuned: <u>https://twitter.com/belle2collab</u> <u>https://www.facebook.com/belle2collab</u> and like us!

thank you for your attention

A+ 10 3

ありがとうございます

Belle II detector

KL and muon detector: **Resistive Plate Counter (barrel)** Scintillator + WLSF + MPPC (end-caps) **EM Calorimeter:** CsI(TI), waveform sampling (barrel) Pure Csl + waveform sampling (end-caps) Particle Identification Time-of-Propagation counter (barrel) electron (7GeV) Prox. focusing Aerogel RICH (fwd) Beryllium beam pipe 2cm diameter Vertex Detector 2 layers DEPFET + 4 layers DSSD positron (4GeV) Central Drift Chamber He(50%):C₂H₆(50%), Small cells, long lever arm, fast electronics

SuperKEKB parameters

	KEKB LER /HER	Phase 1	Phase 2 4x8	Phase 3
β _x * (mm)	1200 / 1200	/	128 / 100	32 / 25
β _y * (mm)	5.9 / 5.9	/	2.16 / 2.4	0.27 / 0.30
ε _x (nm)	18 / 24	2.0/4.6	2.1/4.6	3.2 / 4.6
$\epsilon_{y}(pm)$, coupling	1498 / 1598	~ 10 / -	29.4 / 64.4, 1.4% (105 / 230, 5.0%)	8.64 / 12.9 (0.27% / 0.28%)
ξγ	0.129 / 0.090	-	0.0484 / 0.0500 (0.0257 / 0.0265)	0.088/0.081
σ _y * (μm)	0.94 / 0.94	-	0.25 / 0.39 (0.48 / 0.74)	0.048/0.062
I _{beam} (A)	1.64/1.19	1.01/0.87	1.0/0.8	3.6/2.6
N _{bunches}	1584	1576	1576	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	2.1	-	2 (1)	80

SuperKEKB beam energy

Publication in NIM A, 2018: First Measurements of Beam Backgrounds at SuperKEKB <u>arXiv:1802.01366</u>

B2TIP document

Belle II Physics Book to be published soon in PTEP: update of Belle II sensitivity studies. See Belle II Theory Interface Platform: <u>https://confluence.desy.de/display/BI/B2TiP+WebHome</u>

- * Inclusive and exclusive Leptonic and Semi-leptonic B decays, $|V_{ub}|$ and $|V_{cb}|$: B $\rightarrow \tau v$, B $\rightarrow \mu v$, B $\rightarrow D^{(*)}\tau v$, B $\rightarrow \pi \tau v$, B $\rightarrow X_c \tau v$, B $\rightarrow D^{**}\ell v$, B $\rightarrow \pi \ell v$, B_s $\rightarrow K\ell v$, B $\rightarrow X_u \ell v$, B_(s) $\rightarrow X_c \ell v$, ...
- * Radiative and electroweak Penguin B decays: $B \rightarrow X_{s,d}\gamma, B_{(s)} \rightarrow V\gamma, B_{(s)} \rightarrow \gamma\gamma, B \rightarrow X_{s}\gamma\gamma, B \rightarrow X_{s,d}\ell\ell, B \rightarrow K^{(*)}\ell\ell$ (inclunding $\tau\tau$), $B_{(s)} \rightarrow \tau\tau, B \rightarrow K^{(*)}\nu\nu, B_{d,s} \rightarrow \nu\nu, b \rightarrow q\tau\tau, ...$
- * Time Dependent CPV, β and α : B→J/ ψ K_s, B→J/ ψ \pi⁰, B→ ϕ K⁰, B→ η 'K⁰, B→ ω K_s, B→K_s π^0 , B→K_s π^0 γ, B→ $\pi\pi$, B→ $\pi^0\pi^0$, B→ $\rho\rho$, B→ $\rho\pi$,...
- Determination of γ.
- * Charmless hadronic B decays and direct CPV: $B \rightarrow \rho K^*, B \rightarrow K^* \pi, ...$
- Charm physics:
- Quarkonium-like physics.
- * τ physics: cLFV decays, CPV, ...
- Dark sectors and Light Higgs.

Available datasets

Existing datasets in fb ⁻¹ (M events)								
Experiment	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	$\Upsilon(5S)$	$\Upsilon(6S)$		
CLEO	1.2 (21)	1.2 (10)	1.2 (5)	16 (17.1)	0.1 (0.4)	-		
BaBar	-	14 (99)	30 (122)	433 (471)	R_b scan	R_b scan		
Belle	6 (102)	25 (158)	3 (12)	711 (772)	121 (36)	5.5		