Search for dark matter particles with CRESST-III

Lucia Canonica For the CRESST Collaboration

Max-Planck-Institut für Physik, München

30th Rencontres de Blois June 03 - 08, 2018 Château de Blois, Blois

SFB 1258 Neutrin Dark M

Direct Dark Matter detection

- Most common scenario for the DM interaction:
 - Scattering off nuclei
 - Elastically and coherently
 - Spin independently

- Small recoil energies
- Low interaction rate

The CRESST experiment

Cryogenic Rare Event Search with Superconducting Thermometers

3

L. Canonica

The CRESST experiment

Cryogenic Rare Event Search with Superconducting Thermometers

- Direct detection of Dark Matter particles via their scattering off target nuclei
- Target: Scintillating CaWO₄ crystals
- Operated as cryogenic calorimeters (~15mK)
- Separate cryogenic light detector to detect the scintillation light signal.
- Transition Edge Sensor (TES) for read out

Credit: MPP/T.Dettlaff

Cryogenic calorimeter

Cryogenic calorimeter Temperature **Thermometer Absorber** Time Thermal link Measurement of total deposited lacksquare**Heat sink** energy (particle independent)

Cryogenic calorimeter

• **Particle identification** given by the measurement of the scintillation light (Light yield).

Particle ID and thermal sensor

Excellent discrimination between potential signal events (**nuclear recoils**) and dominant radioactive background (**electron recoils**)

Heater

1 mm

Thermal link

to heat bath

0.5 mm

Detection of temperature rise with superconductor sensor operated at the phase transition from normal to superconducting

L. Canonica

Particle ID and thermal sensor

Excellent discrimination between potential signal events (**nuclear recoils**) and dominant radioactive background (**electron recoils**)

Heater

1 mm

Thermal link

to heat bath

0.5 mm

Detection of temperature rise with superconductor sensor operated at the phase transition from normal to superconducting

L. Canonica

CRESST III detector module

- Detector layout optimized for low-mass dark matter
- Cuboid fully scintillating housing
- Instrumented holders
- L. Canonica

Threshold design goal: 100 eV threshold

CRESST III

Data taking: July 2016 - February 2018

- high statistics gamma calibration (350 h)
- high statistics neutron calibration (840 h)
- 20 % of DM data as training set

Total of 10 detector modules

L. Canonica

Detector thresholds

L. Canonica

Detector A

Data taking period for this analysis: Non-blind data (dynamically growing): Target crystal mass: Gross exposure (before cuts): Analysis threshold: 10/2016 - 05/2017 20% randomly selected 24g 2.39 kg days 100 eV

Detector A: neutron calibration

L. Canonica

Detector A: Dark Matter data

L. Canonica

Detector A: Region Of Interest

L. Canonica

Detector A: Energy spectrum

L. Canonica

Detector A: Energy spectrum

Detector A: ROI energy spectrum

Detector A: ROI energy spectrum

Dark matter limit

Dark matter limit

Current status

- The full statistic results of det A will be released in summer, with energy threshold extended below 100eV.
- More results to come from other modules

L. Canonica

Gram-scale detector prototype

 AI_2O_3 crystal 0.5g $E_{th} = (19.7 \pm 0.9) \text{ eV}$

First prototype detector successfully tested:

- operated above ground
- setup without shielding

Measuring time 5.3h No data quality cuts

Gram-scale exclusion limit

Conclusions

- CRESST III, using cryogenic detectors, has set new benchmark point in low-mass dark matter search.
- First data from CRESST-III showed:
 - design goal of 100 eV threshold successfully reached
 - excellent sensitivity to low energy nuclear recoils provide the best sensitivity for dark matter particles < 1.7 GeV/c²
- Gram-scale detector extends limit down to 140 MeV/c².

Conclusions

- CRESST III, using cryogenic detectors, has set new benchmark point in low-mass dark matter search.
- First data from CRESST-III showed:
 - design goal of 100 eV threshold successfully reached
 - excellent sensitivity to low energy nuclear recoils provide the best sensitivity for dark matter particles < 1.7 GeV/c²
- Gram-scale detector extends limit down to 140 MeV/c².

Backup slides

Sensitivity projections

Optimum trigger – Detector A

Optimum filter for threshold analysis

 Continuous sampling of raw data

 Study the noise distribution after optimum filter in order to set the threshold

Analytical description of amplitude distribution in empty baselines

Optimum filter

Typical improvement in resolution by using the optimum filter: factor 2-3

Differential interaction rate

$$\frac{dR}{dE_r} = \frac{\sigma_0}{m_{\chi}} \frac{F^2(E_r)}{\mu^2} \rho_{\circ} T(E_r) \frac{\sigma_0}{v_{\circ} \sqrt{\pi}}$$

counts per kg, day and keV recoil energy Er

 $\boldsymbol{\sigma}_{0}$

interaction cross section at zero momentum transfer

 m_{χ} dark matter particle mass

 $F(E_r)$

 $\mu = \frac{m_{\chi} m_N}{m_{\chi} + m_N}$

 $T(E_r) = \frac{\sqrt{\pi}}{2} v \int_{v_{min}}^{v_{esc}} \frac{f_1(v)}{v} dv$ $v_{min} = \sqrt{\frac{E_r m_N}{2\mu^2}}$

reduced mass

nuclear form factor

integral over local dark matter velocity distribution

minimal velocity to produce a recoil of given energy E_r