

NEWSdm Direction Sensitive Dark Matter Search with Super-high Resolution Nuclear Emulsion

Tatsuhiro Naka

Nagoya University@Japan
On behalf of NEWSdm collaboration

- Rotation velocity curve: 240 +- 14 km/sec
- Expected local dark matter density: 0.4 GeV/cm3
 - (270000 times dense than the average of overall dark matter density in the universe)
- Dark matter flux on the earth: 1000000 /cm2/sec for 100 GeV/c2 dark matter mass

Direction Information → new information for new generation dark matter search experiment

Beyond neutrino floorDark Matte Astronomy

Potential of Directional Sensitive Search

Direction information: Several 10 events

Annual modulation: Several 1000 events

Challenge for Direction Sensitive Dark Matter technologies

Can the solid (or liquid) detector have directional sensitivity to nuclear recoil signal due to WIMPs?

- Track length of recoiled nuclei < ~ 1 μm</p>
- > Angular dispersion due to straggling ~ 25deg. § 105

As dark matter detector • •

- ✓ low-background
- ✓ scalability

New technical challenge!!

Low mass (~10 GeV/c2) search : light target + < 200 nm length High mass (> 100 GeV/c2) search : heavy target + < ~700 nm

Nuclear Emulsion

Nuclear Emulsion

Latest the nuclear emulsion experiment and readout

OPERA detector

20 m

Observed neutrino oscillation with 30 ton emulsion detector x 5 years (150 ton year) (Emulsions are 20 % volume in this picture)

Current highest speed readout system

Scanning speed ~ several ton /year

Ref: M. Yoshimoto el al., arXiv:1704.06814 [physics.ins-det]

2018/6/5

Tracking for nuclear emulsion

Electron microscope image of α -ray

Concept of super-high resolution

Self-production of Nano Imaging Tracker(NIT)

Production time : 4-5 hours /batch

•One butch : ~ 100 g (+ 300 g)

(there are 2 type machines)

⇒ kg scale production is possible using this machine.

Controlled AgBr crystal

T. Asada, T. Naka + , Prog Theor Exp Phys (2017) 2017 (6): 063H01

Tracking for nuclear emulsion

Electron microscope image of α -ray

prototype NIT film for dark matter experiment

◆ Intrinsic radioactivity :

U-238	Th-232	K-40	Ag-110m	C-14
27	6	35	(~400)	24000

[mBq/kg]

Elemental composition of NIT

	Mass fraction	Atomic Fraction
Ag	0.44	0.10
Br	0.32	0.10
I	0.019	0.004
С	0.101	0.214
0	0.074	0.118
N	0.027	0.049
Н	0.016	0.410
S, Na + others	~ 0.001	~ 0.001

◆ Intrinsic neutron emission:

~ 1.2 /kg/y (by SOURCE simulation)

 \Rightarrow ~ 0.1 /kg/y (> 100 nm nuclear recoil)

β-ray event rejection potential

- ☐ Cryogenic crystal effect
 - crystal quantum efficiency is drastically decrease by lower temperature
 - nuclear recoil is not by the thermal spike
- ⇒ Powerful discrimination between nuclear recoil and electron
- e.g.) expected BG signal eff. due to electron $< 10^{-9}$ @80K
- Chemical treatment
 - Nuclear recoil can create enough number of e-h pair for the Ag core
 - Dopant in the AgBr crystal to suppress the sensitivity only electron
- Low background material
 - gelatin have high C-14 level
 - replacement to the synthetic polymer
 - \Rightarrow at least > 10³ rejection

(aleady measured byAMS)

As potential, $> 10^9$ rejection power is expected by combination of some techniques

⇒ Now, constructing the calibration system in the LNGS

NIM A 845 (2017) 373 -377

Development of New Readout System

Prototype R&D system @Nagoya and Napoli

Low-velocity ion tracking

Can use ion implantation as calibration source

- Mono energy ($\pm 0.1 \text{ keV}$)
- Good direction uniformity (<10 mrad)
- Now, C from CO₂ Ar, Kr (but other various ion is possible)

Side view of id

AgBr crystal has good sensitivity about Carbon (~ 100 % efficiency)

16

Candidate selection method using epi-illuminated optical microsco

K. Kimura and T. Naka, Nucl. Inst. Meth. A 680 (2012) 12-17

11 µm

T. Katsuragawa et al, JINST 12 T04002 (2017)

Performance using only elliptical shape analysis

Readout efficiency PTS-1.5(Ellipticity>=1.25,1.40,1.60 & minor>=4.8) Track length v.s. Ellipticity PTS-1.5 Elli1.25 cut PTS-1.5_Elli1.40 cut PTS-1.5 Elli1.60 cut Track length [nm] Distance between grains [nm]

Current microscope has the potential to select > 100 nm length

tracks

Direction sensitive eff.: ~30 % @60 keV (now on studying) **Angular resolution:** ~30 deg. @60 keV

Demonstration of direction sensitive nuclear recoil detection due to 14.8 MeV neutrons

Mostly detected target was Br recoil [< 200 keV]

Now, we are preparing CNO recoil demonstration due to 565 keV (Li-p nuclear fission reaction)

Concept of confirmation of signal

- ✓ complicate Ag filament structure ⇒ unique information as signal
- ✓ this structure depends on the dE/dx and controlled by the type of development treatment

silver filament structure in nano-scale. Is unique information as nuclear recoil signal

Beyond optical resolution analysis

2014 Nobel Prize in Chemistry

The Nobel Prize in Chemistry 2014 was awarded jointly to Eric Betzig, Stefan W. Hel William E. Moerner "for the development of super-resolved fluorescence microscop

Beyond diffraction limit concept

e.g., STED, STORM

Localised Surface Plasmon resonance

Localized Surface Plasmon Resonance

silver nano particle

$$p = 4\pi\varepsilon_m a^3 \frac{\varepsilon_1(\lambda) - \varepsilon_m(\lambda)}{\varepsilon_1(\lambda) + 2\varepsilon_m(\lambda)} E_0$$

$$\varepsilon_1(\lambda_l) + 2\varepsilon_m(\lambda_l) \approx 0$$

Silver-nano particle

New plasmon nano-tracking system [prototype]

New epi-illuminated optical microscope system @ Napoli University, Italy

Calibration of spatial resolution using single silver grain

Bary-center shift → resolution

Position accuracy ~ 5 nm

≒spatial resolution

**usual optical resolution > ~200nm

Automatic analysis system for the plasmonics

Direction sensitivity using plasmon analysis

Shift of barycenter is important information for nano-scale structure

Demonstration of the direction sensitivity have been done.

Preli

Direction sensitivity of low-energy C ion [30 keV]

Expected: 135° -> Measured: 136°

Indication that we can see low-mass dark matter less than 10 GeV/c2 with direction sensitivity

NEWSdm potential using NIT device

NIT detector / CNO sensitive / no Bkg no directionality Simulation limit is "energy > 5 keV for all atoms (SRIM limit)" & "Sensitivity > 0.1 % (Simulation statistics limit;10 event)"

NEWSdm ~ Nuclear Emulsions for WIMP Search + directional measurement

http://news-dm.lngs.infn.it

NEWS: Nuclear Emulsions for WIMP Search
Letter of Intent
(NEWS Collaboration)

LOI under review by the LNGS scince committee https://arxiv.org/abs/1604.04199

2018/6/5

Test experiment environment

Gran Sasso underground laboratory, Italy

Conclusion

- > Dark matter is one of the most important subject in nature science
- > Directional sensitive search is new methodology to obtain new information for direct dark matter search
- ➤ Super-fine grained nuclear emulsion (Nano Imaging Tracker : NIT) is capable of detecting nano-track, and very promising detector for direction-sensitive dark matter detection
- > NEWSdm project is now on going as international experiment toward directional dark matter search in the LNGS
- > Quite new technologies are continued to produce as "nano-tracking technologies"