

VERITAS Observations of Dwarf Galaxies

Benjamin Zitzer For The VERITAS Collaboration

Manuel Markovich Markovich

Introduction to VERITAS

- Support From:
 - NSF (USA)
 - DOE (USA)
 - Smithsonian Institution (USA)
 - NSERC (Canada)

- Upgrades:

 - 2Fall 2011
 - Summer 2012

Array of four IACTs in southern Arizona, USA Employs ~100 scientists in five countries Full Array operations started in 2007

Move of telescope 1 in Summer 2009 and improved mirror alignment system FPGA-based camera trigger upgrade in

Camera Upgrade with High-QE PMTs in

Atmospheric Cherenkov Technique

Benjamin Zitzer, 30th Recontre de Blois

www.cta-observatory.org

VERITAS Performance

- Energy Range: 85 GeV to > 30 TeV
 - Energy Resolution: 15-25%

Angular Resolution: <0.1° at 1 TeV (68%) Pointing Accuracy Error: < 50 arcsec

γ-rays from Dark Matter Annihilation

Annihilation Channel	Secondary Processes	Signals	Notes
$\chi \chi \rightarrow q \overline{q}, gg$ $\chi \chi \rightarrow W^+W^-$	$p, \overline{p}, \pi^{\pm}, \pi^{0}$ $W^{\pm} \rightarrow l^{\pm}\nu_{l}, W^{\pm} \rightarrow ud \rightarrow$ + a	p, e, 100 p, e, 100	
$\chi \chi \rightarrow Z^0 Z^0$	π^{\pm}, π^{σ} $Z^{0} \rightarrow ll, \nu \overline{\nu}, q\overline{q} \rightarrow pions$ $\pi^{\pm} \rightarrow V, e^{\pm}V, \pi \rightarrow$	p, e(y)	
AA	$\mu W^{\pm} \rightarrow p, p, p_{i}$ pions	p, o, γ, ν	
$\chi \chi \rightarrow \mu^+ \mu^-$		۴ <mark>0</mark>	Rapid energy loss of μ s in sun before decay results in sub-threshold ν s
$\chi \chi \rightarrow \gamma \gamma$ $\chi \chi \rightarrow Z^0 \gamma$	Z^0 decay	Ŷ	Loop suppressed Loop suppressed
$\chi \chi \rightarrow e^+e^-$		e 🕗	Helicity suppressed
$\chi\chi \rightarrow \nu P$		ν	Helicity suppressed (important for non-Majorana WIMPs?)
$\chi \chi \rightarrow \phi \bar{\phi}$		remms 1 γ's	New scalar field with $m_{\chi} < m_q$ to explain large electron signal and avoid
	-		overproduction of p, γ

- Well-motivated theoretically by extensions of the SM (SUSY, Kaluza-Klein) by weakly-interacting massive particles (WIMPs)
- WIMP annihilation production of gamma-rays
 - Gamma-ray line from direct annihilation
 - Gamma-ray continuum from hadronization
 - Enhanced near DM mass from internal bremmstraung.
 - DM gamma-ray flux:

 $dF(E, \hat{\mathbf{n}})$ $d\ell \ell^2 r(\ell \hat{\mathbf{n}})$ $dEd\Omega$ $d\ell \rho^2(\ell \hat{\mathbf{n}})$ $8\pi M^2$ Astrophysics (J factor) Particle Physics

Almost all roads lead to gamma rays!

VERITAS Dark Matter Targets

Galactic Center (GC)

- Close by (~8kpc)
- Large DM content
- Astrophysical backgrounds

- Dwarf Galaxies (DSphs) No known astrophysical backgrounds Close by (~10's kpc) High mass/light ratio

Galaxy Clusters

- Distant
- Large DM content
- Many are extended
- Astrophysical backgrounds (?)

Benjamin Zitzer, 30th Recontre de Blois

Fermi Unidentified Objects Potentially DM subhalos?

VERITAS Dwarf Galaxy Observations: 2007 to 2013

DSph	NON	N _{OFF}	$\bar{\alpha}$	Significance	$N^{95\%}$	$\Phi^{95\%}$	Distance	$\log_{10} J(0.17^{\circ})$
	[counts]	[counts]		[σ]	[counts]	$[10^{-12} \text{cm}^2 \text{s}^{-1}]$	[kpc]	$[\text{GeV}^2 \text{ cm}^{-5}]$
Segue 1	15895	120826	0.131	0.7	235.8	0.34	23	$19.2^{+0.3}_{-0.3}$
Draco	4297	39472	0.111	-1.0	33.5	0.15	76	$18.3^{+0.1}_{-0.1}$
Ursa Minor	4181	35790	0.119	-0.1	91.6	0.37	76	$18.9^{+0.3}_{-0.3}$
Boötes 1	1206	10836	0.116	-1.0	34.5	0.40	66	$18.3_{-0.4}^{+0.3}$
Willman 1	1926	18187	0.108	-0.6	23.5	0.39	38	N/A

- Recent VERITAS Publication:
 - Archambault et al. Phys. Rev. D 95, 082001
- Five dSphs observed by VERITAS between 2007 and 2013
 - Total of 230 hours after data quality selection
 - 92 hours Segue 1
- Crescent-shaped region used for background subtraction
- No gamma-ray detection
- Integral flux upper limits above 300 GeV for each dSph

Dark Matter Search/Limits from Dwarf Galaxies

- Applied to Fermi-LAT data Phys. Rev. D 91, 083535 (2015)
- Each event in each ON region gets a weight based on the energy angular distance from dwarf center and dwarf field
 - proportional to likelihood of event being produced by DM
- Test statistic for detection of DM at a given mass is the sum of weights from all dwarfs
- PDF generated from background from compound Poisson distributions
- PPP4 DM model used for single annihilation spectra
- Limits produced by repeating over several test mass and $\langle \sigma v \rangle$
 - Limits on plots where DM hypothesis is rejected at 95% confidence for a given mass

Weight

$$w = \log\left[1 + \frac{s}{b}\right] \longrightarrow s(\nu, E, \theta) = \frac{dN(\nu, E, \theta)}{dEd\Omega} dE \, 2\pi \sin(\theta) d\theta.$$

$$\frac{dN(E, \hat{\mathbf{n}})}{dEd\Omega} = \int_{E_t} \int_{\Omega_t} dE_t d\Omega_t \frac{dF(E_t, \hat{\mathbf{n}}_t)}{dE_t d\Omega_t} R(E, \hat{\mathbf{n}}|E_t, \hat{\mathbf{n}}_t) \xrightarrow{\text{Detector Response}} R(E, \hat{\mathbf{n}}|E_t, \hat{\mathbf{n}}_t) \xrightarrow{\text{Detector Response}} \tau A_{\text{eff}}(E_t) \text{PSF}(\hat{\mathbf{n}}|E_t, \hat{\mathbf{n}}_t) D(E|E_t)$$

Benjamin Zitzer, 30th Recontre de Blois

Event energy [GeV]

0.16

0.14

Angular separation [deg] 0.00 80.0 80.0 90.0

0.04

0.02

0.00

Dark Matter Distribution in Dwarf Galaxies

- Mass density best fit to a generalized NFW profile: $\rho(r) = \rho_s [r/r_s]^{-\gamma} [1 + (r/r_s)^{\alpha}]^{(\gamma-\beta)/\alpha}$
- Figures and J factors used from Geringer-Sameth et al. ApJ, Vol. 801, Issue 2 (2015)

VERITAS Detector Response

- VERITAS detector response required for event weighting
- PSF convolved with $dJ/d\Omega$ to determine weights as a function of direction
- Effective areas, PSF and Energy Dispersion (i.e $P(E | E_{tr})$) determined from γ -ray simulations produced by Corsika and put through VERITAS detector response functions
- Variations due to observing conditions for each dSph (e.g. observed zenith angle)

Dark Matter Search from Dwarf Galaxies

Benjamin Zitzer, 30th Recontre de Blois

11

Dark Matter Search from Dwarf Galaxies

- Velocity-averaged cross section with 95% confidence level
- Each panel assumes 100%
- annihilation into a different SM
- Band represents 1σ systematic
 - Limits shown with and without Segue 1 included in combined limit

Comparison with other Experiments

A Decade of VERITAS Dwarf Observations

- VERITAS Dwarf Observations Divided into two Classes:
 - Deep Exposure dSphs with typically the best J-Factors in the literature to get best DM sensitivity
 - Deep Exposure dSphs are a combination of 'Classical' (i.e. Draco, Ursa Minor) and 'Ultra-faint' (i.e. Segue I, Ursa Major II) dSphs
 - Survey dSphs covering nearly all Northern Hemisphere dSphs
 - This strategy ensures the program is not severely impacted if one of the dSphs is no longer considered a viable indirect DM target.
 - Example: Segue 1 from Bonnivard et al. 2015

A Decade of VERITAS Dwarf Observations

Dwarf	$\log_{10} J_1(0.5^\circ)$	$\log_{10} J_2(0.5^\circ)$	$\log_{10} D_1(0.5^\circ)$	Exposure v4	Exposure v5	Exposure v6	Total Exposure
	$[\text{GeV}^2 \text{ cm}^{-5}]$	$[\text{GeV}^2 \text{ cm}^{-5}]$	$[\text{GeV cm}^{-2}]$	[min]	[min]	[min]	[min]
Segue 1	$19.4_{-0.4}^{+0.3}$	$17.0^{+2.1}_{-2.2}$	$18.0^{+0.2}_{-0.3}$	0	6121	4921	11042
Ursa Major II	$19.4_{-0.4}^{+0.4}$	$19.9^{+0.7}_{-0.5}$	$18.4_{-0.3}^{+0.3}$	0	0	10869	10869
Ursa Minor	$18.9^{+0.3}_{-0.2}$	$19.0\substack{+0.1\\-0.1}$	$18.0^{+0.2}_{-0.1}$	711	2209	6844	9724
Draco	$18.8\substack{+0.1\\-0.1}$	$19.1_{-0.2}^{+0.4}$	$18.5_{-0.1}^{+0.1}$	1169	2170	3435	6813
Coma Berencies	$19.0\substack{+0.4\\-0.4}$	$19.6\substack{+0.8\\-0.7}$	$18.0^{+0.2}_{-0.3}$	0	0	2204	2204
Segue II	$16.2^{+1.1}_{-1.0}$	$18.9^{+1.1}_{-1.1}$	$15.9^{+0.4}_{-0.4}$	0	0	1128	1128
Boötes 1	$18.2\substack{+0.4\\-0.4}$	$18.5\substack{+0.6\\-0.4}$	$17.9^{+0.2}_{-0.3}$	960	0	0	960
Leo II	$18.0\substack{+0.2\\-0.2}$	$17.8\substack{+0.2\\-0.2}$	$17.2_{-0.5}^{+0.4}$	0	0	946	946
Willman 1	N/A	N/A	N/A	931	0	0	931
Triangulum II	N/A	N/A	N/A	0	0	909	909
Canes Ver. II	$17.7\substack{+0.5\\-0.4}$	$18.5^{+1.2}_{-0.9}$	$17.0^{+0.2}_{-0.2}$	0	0	864	864
Canes Ver. I	$17.4_{-0.3}^{+0.4}$	$17.5^{+0.4}_{-0.2}$	$17.6^{+0.4}_{-0.7}$	0	0	850	850
Hercules I	$16.9^{+0.7}_{-0.7}$	$17.5^{+0.7}_{-0.7}$	$16.7^{+0.4}_{-0.4}$	0	0	794	794
Sextans I	$18.0\substack{+0.2\\-0.2}$	$17.6^{+0.2}_{-0.2}$	$17.9^{+0.1}_{-0.2}$	0	0	783	783
Draco II	N/A	N/A	N/A	0	0	598	598
Ursa Major I	$17.9^{+0.6}_{-0.3}$	$18.7\substack{+0.6\\-0.5}$	$17.6^{+0.2}_{-0.4}$	0	0	482	482
Leo I	$17.8\substack{+0.2\\-0.2}$	$17.8\substack{+0.5\\-0.2}$	$17.9^{+0.2}_{-0.2}$	0	0	409	409
Leo V	$16.4_{-0.9}^{+0.9}$	$16.1^{+1.2}_{-1.0}$	$15.9^{+0.5}_{-0.5}$	0	0	167	167
Leo IV	$16.3^{+1.1}_{-1.7}$	$16.2^{+1.5}_{-1.6}$	$16.1^{+0.7}_{-1.1}$	0	0	151	151

- V4 before T1 move, V5 after T1 move, V6 after camera upgrade
- J factors from ApJ, Vol. 801, Issue 2 (2015), integrated within 0.5 deg

Benjamin Zitzer, 30th Recontre de Blois

er camera upgrade rated within 0.5 deg

Ursa Major II – Preliminary Results

- Dwarf Spheroidal Galaxy discovered by SDSS (Zucker et al. 2007)
- 145 hours of quality-selected data between 2013 and 2017
- J Factors from Geringer-Sameth et al. ApJ, Vol. 801, Issue 2 (2015)
- Limit computed using unbinned maximum likelihood (Aleksic, Rico and Martinez, 2012, jcap, 10, 32)
- band represents 1 sigma uncertainty in the J factor
- Preliminary limit exceeds 216 hour combined limit at all masses for tau lepton and b quark channels

Conclusions and Future Work

- VERITAS Observations of 230 hours of dwarf galaxies between 2007 and 2013
- Combined search and limits using 216 hours from 100 GeV to 100 TeV
- Method for DM search and computing limits utilizing individual event energies and directions
- VERITAS has a larger data set with data taken after 2013, including a large exposure on Ursa Major II
- VERITAS now working with other gamma-ray experiments for standardization and combination of DM searches

