

Search for vector-like quarks in ATLAS

Tobias Golling, University of Geneva

On behalf of the ATLAS Collaboration

30th Rencontres de Blois, June 3-8 2018

Motivation

 Natural solution to hierarchy problem

 ED, Little/composite Higgs models

EW vector resonances

 Top/bottom partners typically "light"

Fermionic resonances

Top partners

VLQs: Top/Bottom Partners

 Considering four different kinds of Vector-Like Quarks (VLQs) with different charge

JHEP 11, 030 (2009)		(triplets not included)	
	Label	Charge	Decay mode
T singlet	Ts	+2/3	T-→W+b, Zt, ht
B singlet	Bs	-1/3	B-→W⁺t, Zb, hb
(T,B) doublet	TB _d	(+2/3, -1/3)	T→W+b, Zt, ht B→W+t, Zb, hb
(X,T) doublet	ΧΤ _d	(+5/3, +2/3)	X→W+t T→Zt, ht
(B,Y) doublet	BY _d	(-1/3, -4/3)	B→Zb, hb Y→W·b

Come in EW singlets, doublets, triplets

VLQ Production Modes at the LHC

- Strongly produced in pairs: large QQ cross-section only dependent on mass (just like tt̄)
- Single production dependent on mass, charge, coupling (like single top)

VLQ Decay Modes

Difference in chirality of singlet and doublet couplings and interference with SM processes are negligible in the presented analyses

VLQ Pair Signature

Spectacular signatures: boosted b-jets, tops, W, Z, H bosons

VLQ Pair Production: TT

- Exclusive vs. inclusive, compromise: 1 VLQ exclusive (e.g. T→Ht), the other inclusive (T→X)
- Highlight doublet ★ and singlet ●

(not a combination, just overlaying results)

600

800

m(Zb) [GeV]

m(Zb) [GeV]

Now with Run II data...

Refined Strategy for Run II & beyond

- Improved boosted hadronic top, W, Z and Higgs tagging
 - Large-R jets built from reclustered small-R jets → propagate systematic uncertainties [1803.09678]
 - BDT and DNN [ATLAS-CONF-2017-064]
 - Track-CaloCluster [ATL-PHYS-PUB-2017-015]
 - Mitigate the calorimeter angular resolution limitations by combining tracks and caloclusters before jet finding
- Improved high-p_⊤ b-tagging [ATL-PHYS-PUB-2017-013]
 - RNN and DNN
 - Train algorithm on large statistics of high p_T jets
- Include Z(→vv) final states [1705.10751]
- Include all-hadronic final states [1803.09678]

Improved boosted object tagging with BDT & DNN

Track-CaloCluster (TCC) matching

Improved resolution with TCC

Improved high-p_T b-tagging

B-tagging very challenging at high p_T

Development of new training sample that populates high p_T

+ RNN and DNN tagging: all in all **factor 3** improvement at high p_T

TT→ Ht+X Search Strategy

Top-tags

- p_T> 300 GeV
- m> 140 GeV
- ≥ 2 subjets

Higgs-tags

- p_T> 200 GeV
- 105 < m < 140 GeV
- = 2 subjets (p_T < 500 GeV)
- 1 or 2 subjets (p_T> 500 GeV)

- 1-lepton-trigger or **0-lepton** MET trigger
- At least 5 jets
- At least 2 b-tags,
- Reclustered large-R jets (top, H)
- Final discriminant: m_{eff}

TT→ Ht+X Search Strategy

[1803.09678]

- 34 signal regions
 - Jet multiplicity
 - B-tags
 - Top-tags
 - Higgs-tags

Maximum likelihood fit to m_{eff} in all search regions

Largest background: tī+jets

Use validation regions

Multi-jet BG: data-driven

- matrix method (1-lep)
- fit to $\Delta \phi$ min(4j) (0-lep)

Other small BG from MC: tt+V, tt+H, single top, VV, W/Z+jets

Dominant systematics:

- tt̄ modeling
- b- top- Higgs-tagging
- background normalization

TT→ Ht+X Limits

- Limits set per channel and then combined
- VLQ masses excluded up to:
 - 1.4 TeV (100% BR T→Ht)
 - 1.3 TeV (doublet)

Single and pair VLQs with Z→II

VLQ search with Z→II

- Major background
 - 2 lepton search
 - Z+jets
 - t̄t̄
 - 3 lepton search
 - VV
 - tt+Z

- Backgrounds validated in control regions
 - Outside Z window / fewer b-tags / lower H_T or p_T(II)
- Search limited by statistical uncertainties
- Dominant systematics: background modeling

Z→II: TT limits

No excess ⇒ limits at 95% CL

(results for BB in backup)

Z→II: Single VLQ T limits

 Assuming singlet model

8.0

0.6

0.4

0.2

13 TeV, 36.1 fb⁻¹

for large m

0.6

0.4

limits 25

Summary

- Broad search program for VLQs at ATLAS
 - All important decay modes considered
 - Boosted objects & high-p_T b-tagging becoming more and more important

- No evidence for new physics yet
 - Mass exclusions @ 95% CL in Run I: ~800 GeV → Run II: up to 1.4 TeV (pair production)

Still many analyses in the pipeline

Backup

Z→II: BB limits

95%

No excess ⇒ limits at 95% CL

EWPTs:

 $V_{Tb} \le 0.1$ (applies to single multiplet)

Relaxed for >1 multiplet (well motivated in CH models)