

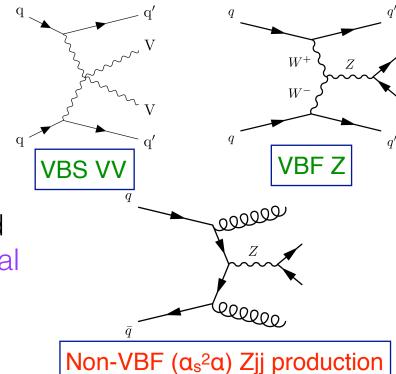
Blois 2018 — June 5, 2018

Resent Results from ATLAS and CMS on Vector Boson Fusion and Vector Boson Scattering

Kenneth Long

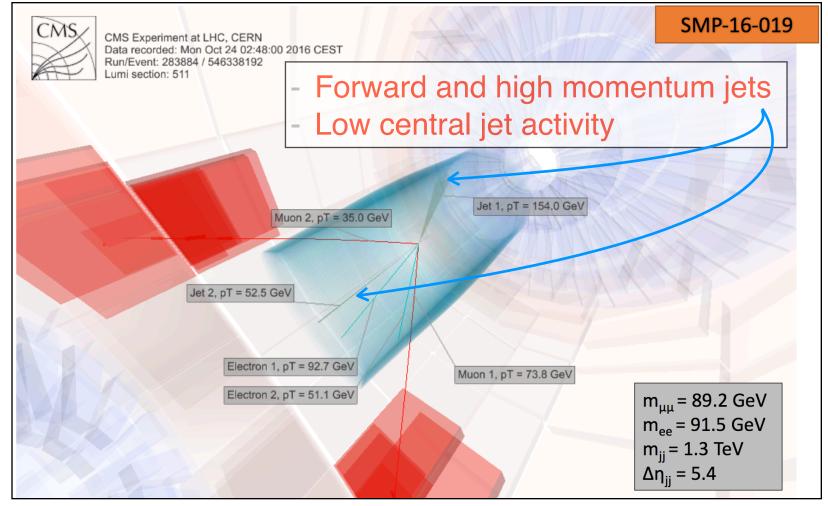
University of Wisconsin — Madison

for the ATLAS and CMS Collaborations



Introduction and Motivation

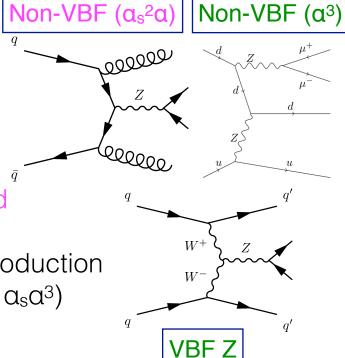
- ► (Di-)boson production via vector boson scattering/fusion (VBS/VBF)
 - Important component of Vjj/VVjj production proceeding entirely via EW interactions at tree level
 - Given SM Higgs, vector boson self-interactions precisely predicted
 - Deviations from predictions signal new physics in EW sector


- High statistics in VBF Z/W allows precise test of SM and tools (e.g. Monte Carlo) and analysis techniques
 - Important implications for Higgs VBF
- Low cross sections for VBS just becoming accessible
 - Quickly moving from observation to measurement

Picture of a VBS-Candidate Event

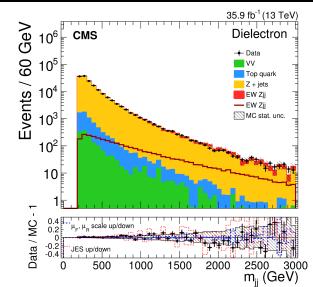
- ▶ VBF/VBS: Radiation of vector bosons, lack of color flow between jets
 - → Distinct kinematic signature for V/VVjj EW component

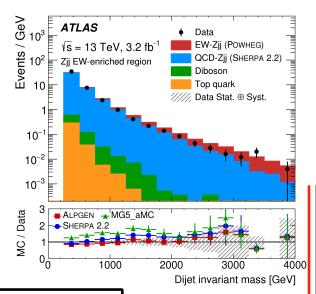
Kenneth Long


VBS ZZjj Candidate Event from PLB 774 (2017) 682

VBF/VBS Measurement Procedure

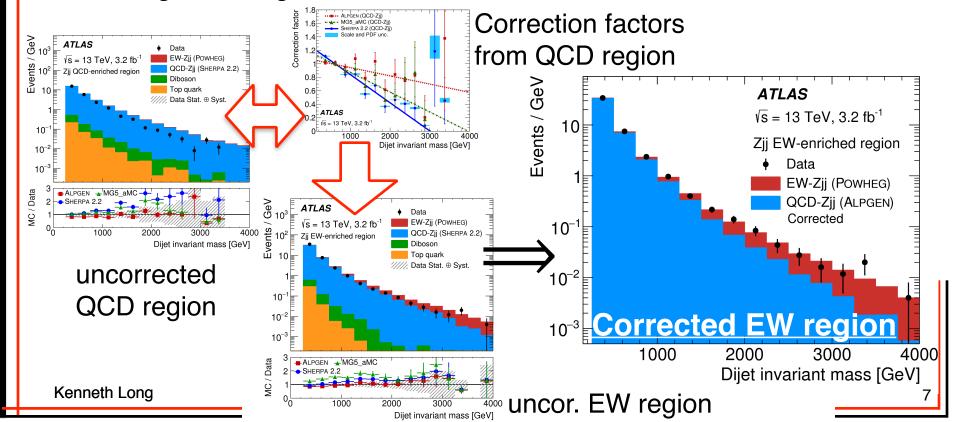
- Backgrounds divided into two classes
 - Nonprompt/fake (reducible)
 - Selected due to mis-ID from data
 - Prompt (irreducible)
 - Selected without mis-ID ⇒ from MC
- All EW-induced O(α⁴ or α³) as signal
- ▶ QCD-induced O(a_s²a or a_s²a²) as background
 - ★ Almost always dominant background
 - Notable exception: same-sign WW production
- ► Mixed QCD/EW interference terms, O(a_sa² or a_sa³)
 - usually uncertainty on QCD background
- Procedure: select Vj(VVjj) events, estimate non-Vj(VVjj) backgrounds, distinguish EW and QCD via kinematic selections
 - Low stats, S/B ⇒ MVA or shape-based fit ⇒ theory uncertainty
- Major uncertainties
 - Jet energy scale/resolution, background modeling
 - Modeling uncertainty reduced for combined EW+QCD measurement


Vector Boson Fusion Measurements



VBF Z at 13 TeV: Overview

- Important "standard candle" for VBF Higgs
- Very high statistics ⇒ precision measurement
- Measurements from CMS and ATLAS with different approaches
 - Motivated by data/MC agreement
- Selection:
 - Exactly 2 leptons, $|m_{\ell\ell} m_z| < 15$ (10) GeV
 - Two jets with $p_T > 30$ (25) GeV, $|\eta| < 4.7$ (4.4)
- Backgrounds:
 - Drell-Yan+jets (QCD Zjj) very dominant
 - 1. CMS: Modeled with MG5_aMC ≤2j@NLO (FxFx) and MG5_aMC ≤4j@LO (MLM) +Pythia8
 - 2. ATLAS: Sherpa ≤2j@NLO+4j@LO, Alpgen ≤5j@LO+Py8, MG5_aMC ≤4j@LO+Py8
 - Multi-jet (< 1%)
 - CMS: from MC, ATLAS: from data
 - Others from simulation


VBF Z at 13 TeV: ATLAS Overview

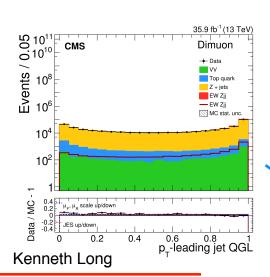
Extract signal strength from fit to mij

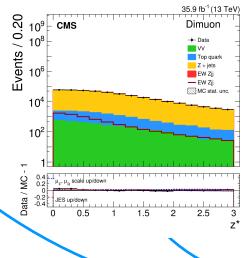
PLB 775 (2017) 206

- Relies on modeling of DY+jets
- ▶ Poor data/MC agreement ⇒ correct MC with data
 - Measure data/MC corrections in m_{jj} in DY-enhanced control region
 - Fit binned ratios in CR (compare several fits) and apply in signal region
- Extract signal strength from fit to corrected distribution

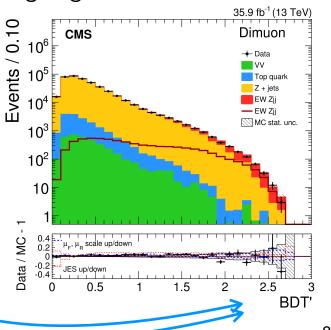
VBF Z at 13 TeV: CMS Overview

- Train BDT with 7 discriminating variables
 - m_{jj} , $\Delta\eta_{jj}$, $z^*(Z)$, $R(p_T)$, dijet p_T , dijet p_T balance, quark/gluon likelihood
 - BDT trained and fit separately for ee and μμ


arXiv:1712.09814

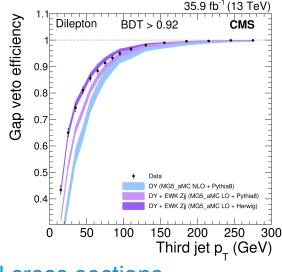

$$\eta^*(z) = \eta(z) - 1/2(\eta_{j1} + \eta_{j2})$$

 $z^* = \eta^*(z)/\Delta \eta_{jj}$


- LO MG5_aMC used for training, NLO used for background in fit
 - Data well-modeled by NLO MC in all distributions considered
 - Shape uncertainty from NLO scale+PDF + EW/QCD inference
 - 10% normalization uncertainty for missing higher orders

Signal strength via fit to transformed BDT

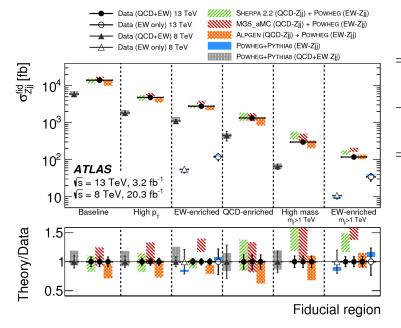
output (BDT')



VBF Z at 13 TeV: Results

- CMS: signal strength used to obtain cross section in loose fiducial region (definitions in backup)
- ATLAS: signal strength in EW region via fit to mjj
 - combined EW/QCD in 6 independent fiducial regions of purity
- CMS also presents study of hadronic activity in VBSenhanced region (compare Herwig++ and Pythia)

ATLAS fiducial cross sections


Fiducial region	EW-Zjj cross-sections [fb]			
r iduciai region	Measured	Powheg+Pythia		
EW-enriched, $m_{jj} > 250 \text{ GeV}$	$119 \pm 16 \pm 20 \pm 2$	125.2 ± 3.4		
EW-enriched, $m_{jj} > 1 \text{ TeV}$	$34.2 \pm 5.8 \pm 5.5 \pm 0.7$	38.5 ± 1.5		

stat ± syst ± lumi

CMS fiducial cross section

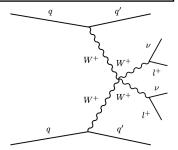
$$\sigma_{fid} = 552 \pm 19 \text{ (stat)} \pm 55 \text{ (syst) fb}$$

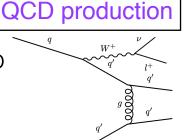
Compare to $\sigma_{LO} = 543 \pm 24$ fb, via MG5_aMC

Kenneth Long

PLB 775 (2017) 206, arXiv:1712.09814

Vector Boson Scattering Measurements

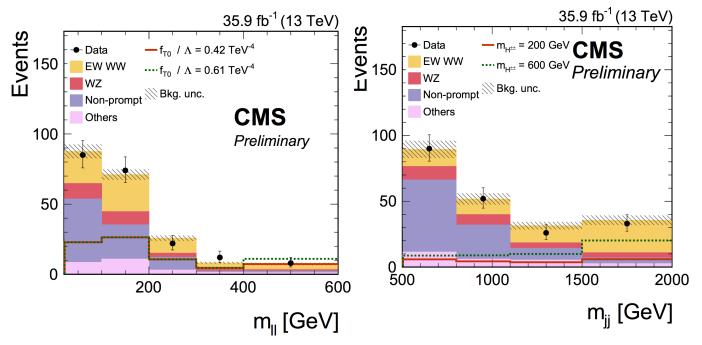

W±W± VBS at 13 TeV from CMS



- Why W±W±jj →ℓ±ℓ±jj?
 - EW production dominant over QCD-induced
 - Distinct same-sign (SS) lepton state, low background
- Selection
 - Exactly 2 SS leptons, $|m_e^{\pm}e^{\pm} m_z| > 15$ GeV
 - $p_T^{miss} > 40 \text{ GeV}$
 - Two jets, $m_{jj} > 500 \text{ GeV}$; $\Delta \eta_{jj} > 2.5$; $\max(z^*(\ell)) < 0.75$
- Backgrounds
- ≥ 2 prompt SS leptons (WZ, QCD WW) \implies from Monte Carlo
 - Correct WZ using data in 3\(\ell\) control regions
- Non-prompt backgrounds (dominant) ⇒ data driven
 - Define "loose" ID with ID+isolation relaxed from "tight"
 - Measure ratio of tight/loose in dijet events
 - Apply loose → tight factors to events passing full analysis selection but failing analysis ID (tight)
- Charge mis-ID: simulation corrected with data

VBS production

PRL 120, 081801 (2018)


W±W± VBS at 13 TeV from CMS

- ► EW significance and cross section measurement via fit to 2D distribution of m_{ii} and m_{II}
- PRL 120, 081801 (2018)
- Observed (expected) significance of 5.5σ (5.7σ)
 - ★ First > 50 VBS measurement

$$\sigma_{fid} = 3.83 \pm 0.66 \text{ (stat)} \pm 0.35 \text{ (syst) fb}$$

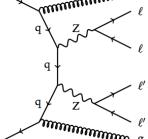
Agrees with MG5_aMC prediction, $\sigma_{LO} = 4.25 \pm 0.27$

Precisions result expected with full Run II dataset!

ZZ VBS at 13 TeV from CMS

- ▶ Why ZZjj →4ℓjj?
 - Extremely clean four lepton signal ($\ell = e, \mu$)
 - Very low nonprompt (fake) background
 - Fully reconstructed final state
 - Sensitive to resonances (including SM Higgs)
 - Access to boson polarizations via spin correlations

... But very low production cross section

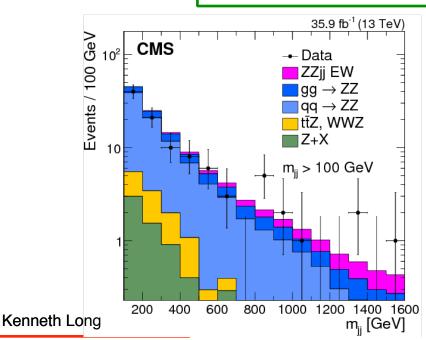

- Selection
 - 4 leptons, 2 Z candidates with m_ℓ+_ℓ- ∈ [60, 120] GeV
 - Two jets with $p_T > 30$ GeV, $|\eta| < 4.7$, $m_{ii} > 100$ GeV
- Backgrounds
 - ≥ 4 prompt leptons (ttV, VVV, QCD ZZ) ⇒ from MC
 - QCD ZZ production via MG5_aMC ≤2j@NLO
 - Low theory uncertainty, good data/MC agreement
 - Validate background modeling in background
 - dominated region with $m_{ii} < 400$ GeV or $\Delta \eta_{ii} < 2.5$
 - Non-prompt backgrounds ⇒ data driven
 - Same technique as for WW, but tight/loose ratios from Z+jets

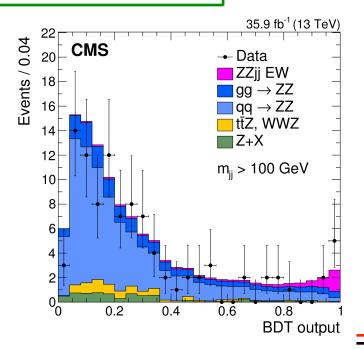
VBS production

The state of th

PLB 774 (2017) 682

QCD production


ZZ VBS at 13 TeV: Results



PLB 774 (2017) 682

- ▶ Limited statistics ⇒ cut-based analysis insufficient
- → Train BDT with 7 discriminating variables
 - m_{jj} , $\Delta \eta_{jj}$, $z^*(Z_1)$, $z^*(Z_2)$, $R(p_T)$, dijet p_T balance, $m_{4\ell}$
 - Use all events with m_{ii} > 100 GeV
- Significance extracted via fit to BDT output distribution
 - Observed (expected) of 2.7 σ (1.6 σ)

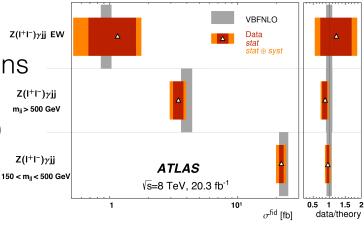
$$\mu = \sigma_{\text{obs}}/\sigma_{\text{th.}} = 1.39^{+0.72}_{-0.57 \text{ (stat)}} + 0.46^{+0.72}_{-0.31 \text{ (syst.)}}$$

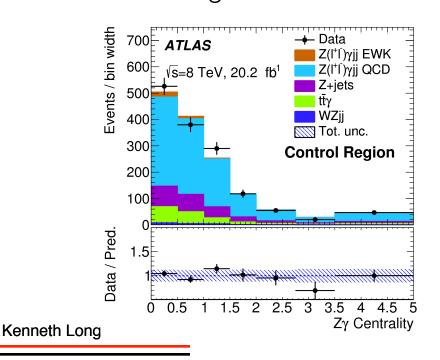
Zy VBS at 8 TeV: Overview

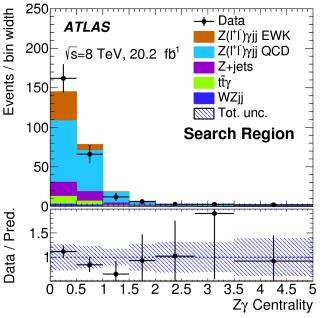
- Why Zγjj →ℓℓγjj
 - Probe different quartic couplings than massive V
 - Fully reconstructed final state
- ► Higher production cross section for Zγjj →ννγjj, but less cleanly reconstructed
 - Most useful for limits on new physics
- Selection (ℓℓγjj)
 - 2 leptons, 1 photon p_T > 15 GeV
 - $|m_{\ell\ell} m_z| > 40 \text{ GeV}, m_{\ell\ell\nu} > 182 \text{ GeV}$
 - m_{jj} > 150 GeV (control region), > 500 GeV (signal)
- Backgrounds
 - WZjj, ttγ, QCD Zγjj from MC
 - ⇒Zγ+≤3j from Sherpa v1.4.5
 - Good data/MC agreement observed
 - Normalization constrained in control region
 - Fake backgrounds (~20%)
 - Z+jets via data-driven estimate with 2D sideband region
 - Shape from region with relaxed m_{ij} for increased stats

VBS production QCD production

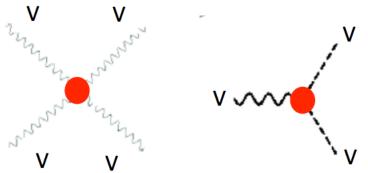
JHEP07(2017)107


Zy VBS at 8 TeV: Results





- Define signal and control regions by m_{jj} (signal > 500 GeV)
- Simultaneously fit control and signal regions
 - QCD normalization free in fit
- ▶ Observed (expected) significance 2.0σ (1.8σ)
- Fit also performed with both EW and QCD treated as signal

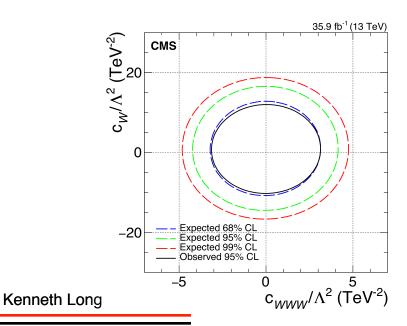

Searches for Anomalous Couplings

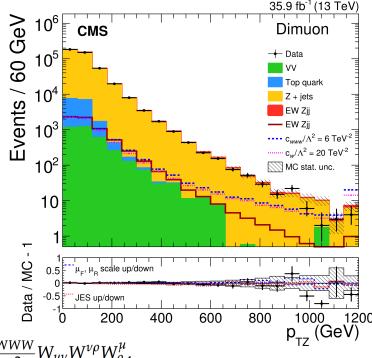
Overview of Anomalous Couplings / EFT

- Generalized language for new physics in vector boson interactions
- Anomalous couplings (triple and quartic)
 - Observed as deviations at high mass
 - Defined by modifying SM lagrangian or effective vertices

- Alternatively... expand in effective field theory (EFT)
 - in terms of Wilson coefficients c_i and New Physics scale Λ

$$\mathcal{L}_{SM} \longrightarrow \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \frac{c_{i}^{(n)}}{\Lambda^{n}} \mathcal{O}_{i}^{(n+4)}$$


- Non-unitary as $\sqrt{\hat{s}} \rightarrow \Lambda$ without form factor
 - Often presented without form factor for simplicity
 - Inclusion of form factor decreases limits

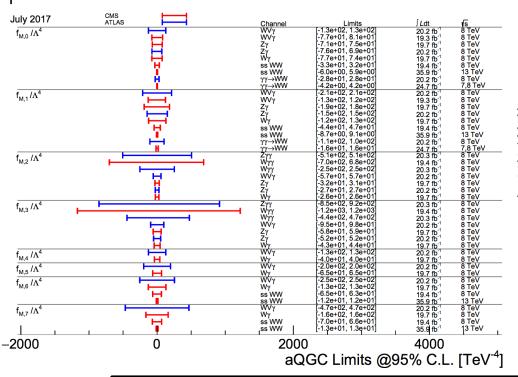

Limits on aTGC from VBF Z

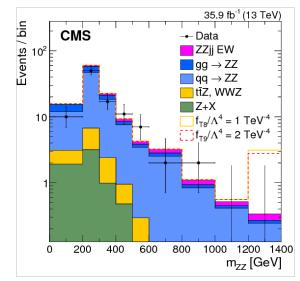
- Limits placed on dimension 6 operators and translated into LEP aTGC formulation
 - Simulation via MG5_aMC@NLO @LO
 - Event weights to grid of parameter values
- 1D limits fix all parameters but one to zero,
 2D for two non-zero
- Most stringent result so far cwww

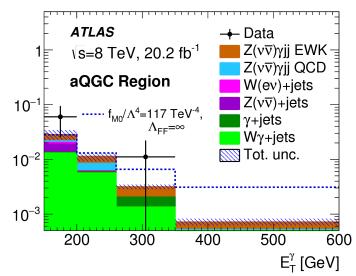
$$egin{aligned} \mathcal{O}_{WWW} &= rac{c_{WWW}}{\Lambda^2} W_{\mu
u} W^{
u
ho} W^{\mu}_{
ho}, \ \mathcal{O}_W &= rac{c_W}{\Lambda^2} (D^{\mu}\Phi)^{\dagger} W_{\mu
u} (D^{
u}\Phi), \ \mathcal{O}_B &= rac{c_B}{\Lambda^2} (D^{\mu}\Phi)^{\dagger} B_{\mu
u} (D^{
u}\Phi), \end{aligned}$$

$$\widetilde{\mathcal{O}}_{WWW} = rac{\widetilde{c}_{WWW}}{\Lambda^2} \widetilde{W}_{\mu\nu} W^{
u\rho} W_{
ho}^{\cdot \mu},$$

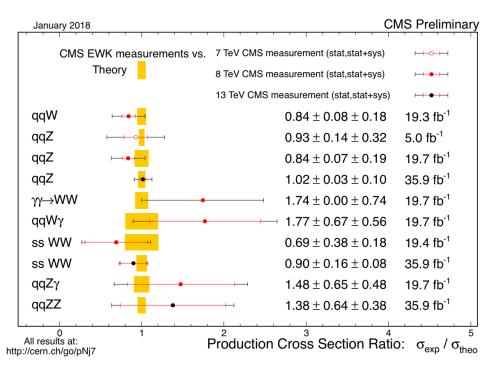
$$\widetilde{\mathcal{O}}_W = \frac{\widetilde{c}_W}{\Lambda^2} (D^{\mu} \Phi)^{\dagger} \widetilde{W}_{\mu\nu} (D^{\nu} \Phi),$$

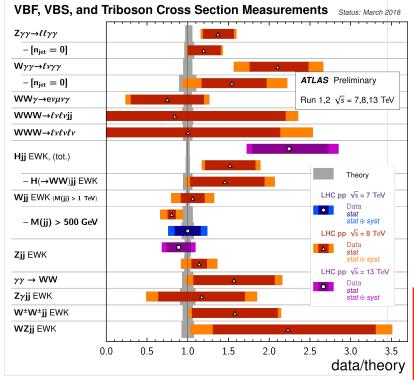

19




Limits on aQGC from VBS Results

- Fit to variable sensitive to massive resonance or boost from massive decay
 - ZZ, SS WW: mee, mae
 - Ζγ (ℓℓγjj and ννγjj): ET(γ)
- Analyses improve constraints on wide range of operators


Kenneth Long JHEP07(2017)107; PLB 774 (2017) 682; PRL 120, 081801 (2018)



Conclusions

- VBF/VBS measurements provide an important probe of standard model
- So far the standard model is withstanding these new tests
 - Deviations could be subtle
 - More data and improved techniques help look for cracks with increased resolution

Backup

Overview of Experimental Status: 8 TeV

VBS measurements (VV+2jets)		ATLAS	смѕ	
	EWK W [±] W [±] ->lvlv	PRL 113, 141803 Cross section (EWK, EWK+QCD) and aQGC measurement Evidence: EWK signal significance 3.6σ (exp 2.8σ) PRD 96, 012007 Updated aQGC limits	PRL 114 (2015) 051801 Cross section (EWK+QCD) and aQGC measurement EWK signal significance 1.9σ (exp 2.9σ)	
8 TeV	EWK Wγ ->lvγ -	-	JHEP 06 (2017) 106 Cross section (EWK, EWK+QCD) and aQGC measurement EWK signal significance 2.7σ (exp 1.5σ)	
o iev	EWK Ζγ ->llγ	JHEP07(2017)107 Cross section (EWK, EWK+QCD), aQGC measurement EWK signal significance 2.0σ (exp 1.8σ)	PLB 770 (2017) 380 Cross section (EWK, EWK+QCD) and aQGC measurement Evidence: EWK signal significance 3.0σ (exp 2.1σ)	
	FWK W// ->IVII	PRD 93, 092004 (2016) Cross section (EWK, EWK+QCD) measurement	PRL 114 (2015) 051801 Cross section (EWK+QCD) measurement	
	EWK WV->lvjj	PRD 95 (2017) 032001 aQGC measurement	-	

VBF measurements (V+2jets)		ATLAS	смѕ	
8 TeV	EWK Z(II)	JHEP 04 (2014) 031 Cross section (EWK) and aTGC measurement Observation: EWK signal significance ~5σ	EPJC 75 (2015) 66 Cross section (EWK) measurement Observation: EWK signal significance ~5σ	
	EWK W(lv)	EPJC 77 (2017) 474 Cross section (EWK, EWK+QCD), differential (EWK, EWK+QCD), aTGC measurement Observation: EWK signal significance >5σ	JHEP11(2016)147 Cross section (EWK) measurement Evidence: EWK signal significance ~4σ	

Overview of Experimental Status: 13 TeV

VBS m	easurements (VV+2jets)	ATLAS	смѕ	
40.7 1/	EWK W [±] W [±] ->lvlv -	-	PRL 120, 081801 Cross section (EWK) and aQGC measurement EWK signal significance 5.5σ (exp 5.7σ)	
13 TeV	EWK ZZ ->4l	-	PLB 774 (2017) 682-705 Cross section (EWK) and aQGC measurement EWK signal significance 2.7σ (exp 1.6σ)	

	VBF measurements (V+2jets)		ATLAS	смѕ
13 Te	13 TeV	EWK Z(II)	PLB 775 (2017) 206 (3.2 fb ⁻¹) Cross section (EWK) measurement	CMS-SMP-16-018 Cross section (EWK) and aTGC measurement Observation: EWK signal significance >5σ
		EWK W(Iv)	-	-

Many analyses with results at 8 TeV (and some new!) are in progress

ATLAS and CMS VBF Z Fiducial Regions

	T					
	Fiducial region					
Object	Baseline	High-mass	${ m High-}p_{ m T}$	EW-enriched	EW-enriched, $m_{jj} > 1 \text{ TeV}$	QCD-enriched
Leptons	$ \eta < 2.47, p_{\rm T} > 25 \text{ GeV}, \Delta R_{j,\ell} > 0.4$					
Dilepton pair	$81 < m_{\ell\ell} < 101 \; \mathrm{GeV}$					
	_			$p_{\mathrm{T}}^{\ell\ell} > 20~\mathrm{GeV}$		
	y < 4.4					
Jets	$p_{\rm T}^{j_1} > 55 \; {\rm GeV} \qquad p_{\rm T}^{j_1} > 85 \; {\rm GeV}$		$p_{\mathrm{T}}^{j_1} > 55 \; \mathrm{GeV}$			
	$p_{\rm T}^{j_2} > 45 \; {\rm GeV} \qquad p_{\rm T}^{j_2} > 75 \; {\rm GeV}$		$p_{\mathrm{T}}^{j_2} > 45~\mathrm{GeV}$			
Dijet system		$m_{jj} > 1 \text{ TeV}$		$m_{jj} > 250 \text{ GeV}$	$m_{jj} > 1 \text{ TeV}$	$m_{jj} > 250 \text{ GeV}$
Interval jets	_		$N_{ m jet~(\it p_{ m T}>25~GeV)}^{ m interval}=0$		$N_{ m jet~(p_T>25~GeV)}^{ m interval} \ge 1$	
Zjj system	_		$p_{\mathrm{T}}^{\mathrm{balance}} < 0.15$		$p_{\mathrm{T}}^{\mathrm{balance,3}} < 0.15$	

CMS fiducial region

- $Im \ell \ell$ $m_Z I < 15 GeV$
- $p_T(q) > 25 \text{ GeV}$
- $m_{qq} > 120 \text{ GeV}$