

Theory status for hadronic top-quark pair production

Christian Schwinn

— RWTH Aachen —

6.06.2018

Highlights of $t\bar{t}$ physics at LHC

- total $\sigma_{t\bar{t}}$ measured with $\sim 3-4\%$ precision
 - Sensitive to m_t , α_s , gluon PDF
 - challenge to precision of NNLO calculation

⇒ dominant higher-order corrections?

Highlights of $t\bar{t}$ **physics** at LHC

- total $\sigma_{t\bar{t}}$ measured with $\sim 3-4\%$ precision
 - Sensitive to m_t , α_s , gluon PDF
 - challenge to precision of NNLO calculation
 - ⇒ dominant higher-order corrections?
- Differential cross sections
 - sensitivity to Z', $g_{\rm KK}$ with $M \sim 5 \,{\rm TeV}$ (Talk by Strobbe)
 - increasing relevance of EW corrections
- m_t -measurement with precision < 1 GeV
 - theoretical interpretation?
 - uncertainty of theory modelling of $t\bar{t}$ production and decay?
- Topics not discussed: $t\bar{t} + H/\gamma/Z/j$, effects of anomalous couplings/dim-6 EFFT operators

- Scale uncertainty $\sim 5\% \gtrsim \mathsf{PDF} + \alpha_s$ uncertainty
- Experimental uncertainty reaches $\sim 3 4\%$

Total cross section

Resummation of threshold-enhanced corrections, $\beta = \sqrt{1 - \frac{4m_t^2}{\hat{s}}} \rightarrow 0$ $\hat{\sigma}_{pp'} \propto \sigma^{(0)} \exp \left[\underbrace{\ln \beta \, g_0(\alpha_s \ln \beta)}_{(LL)} + \underbrace{g_1(\alpha_s \ln \beta)}_{(NLL)} + \underbrace{\alpha_s g_2(\alpha_s \ln \beta)}_{(NNLL)} + \underbrace{\alpha_s^2 g_3(\alpha_s \ln \beta)}_{(N^3 LL)} + \ldots \right]$ $\times \sum_{k=0}^{k} \left(\frac{\alpha_s}{\beta} \right)^k \times \left\{ \underbrace{1}_{(LL,NLL)}_{(NNLL)}; \underbrace{\alpha_s, \beta}_{(NNLL)}; \underbrace{\alpha_s^2, \alpha_s \beta, \beta^2}_{(NNLL)}; \ldots \right\};$

Mellin-space NNLL resummation of threshold logarithms

(Czakon/Mitov/Sterman 09/Cacciari et al. 11, \Rightarrow TOP++)

• SCET/NRQCD resummation of threshold logarithms and Coulomb corrections α_s/β (Beneke/Falgari/(Klein)/CS 09/11; \Rightarrow TOPIXS)

Expansion of resummed cross-section to N^3LO_{approx}

 NNLL in one-particle inclusive kinematics 	(Kidonakis 14)
• Including subleading collinear; $\beta \rightarrow 1$ terms	(Muselli et al. 15)
 Partial N³LL including Coulomb terms 	(Piclum/CS 18)

3

Hadronic $t\bar{t}$ production

Reduction of scale uncertainty from threshold resummation

$$\sigma_{t\bar{t}}^{\text{NNLO}}(13\text{TeV}) = 802.83^{+28.12(3.5\%)}_{-44.97(5.6\%)}\text{pb} \Rightarrow \begin{cases} \text{NNLL}(\text{top} + +) : 821.37^{+20.28(2.5\%)}_{-29.60(3.6\%)}\text{pb} \\ \text{NNLL}(\text{topixs}) : 807.13^{+24.72(3.2\%)}_{-39.03(5.0\%)}\text{pb} \end{cases}$$

(NNLL' terms in top++; resummation uncertainty $\approx \pm 2\%$ in topixs)

Expansion to N³LO: complementary estimate of higher orders

• Partial N³LL: +1.6% relative to NNLO (Piclum/CS 18)

 $\sigma_{t\bar{t}}^{\text{N}^{3}\text{LO}_{\text{app}}}(13\text{TeV}) = 815.70^{+19.88(2.4\%)}_{-27.12(3.3\%)}(\text{scale})^{+9.49(1.2\%)}_{-6.27(0.8\%)}(\text{approx})\text{pb},$

includes estimate of systematic uncertainty of approx:

$$\Delta \sigma_{t\bar{t}}^{\mathrm{N^{3}LO_{app}}}(\mathrm{approx.}) = \underbrace{\stackrel{+7.87}{\underset{-6.24}{-6.24}}}_{C^{(3)}} \underbrace{\stackrel{+5.3}{\underset{-0.0}{-0.0}}}_{\text{kin.ambiguity}} \pm \underbrace{\stackrel{0.11}{\underset{-1}{0.0}}}_{3-\mathrm{loop\ soft-an.dim}} \pm \underbrace{\stackrel{0.60}{\underset{-0.0}{0.0}}}_{\mathrm{Coulomb}} \mathrm{pb},$$

- N^3LO Coulomb corrections only fully known for colour singlet (Beneke et al. 15)

- three-loop massive soft anomalous dimension not known for colour octet

Reduction of scale uncertainty from threshold resummation

$$\sigma_{t\bar{t}}^{\text{NNLO}}(13\text{TeV}) = 802.83^{+28.12(3.5\%)}_{-44.97(5.6\%)}\text{pb} \Rightarrow \begin{cases} \text{NNLL}(\text{top} + +) : 821.37^{+20.28(2.5\%)}_{-29.60(3.6\%)}\text{pb} \\ \text{NNLL}(\text{topixs}) : 807.13^{+24.72(3.2\%)}_{-39.03(5.0\%)}\text{pb} \end{cases}$$

(NNLL' terms in top++; resummation uncertainty $\approx \pm 2\%$ in topixs)

Expansion to N³LO: complementary estimate of higher orders

• Partial N³LL: +1.6% relative to NNLO (Piclum/CS 18)

 $\sigma_{t\bar{t}}^{\text{N}^{3}\text{LO}_{\text{app}}}(13\text{TeV}) = 815.70^{+19.88(2.4\%)}_{-27.12(3.3\%)}(\text{scale})^{+9.49(1.2\%)}_{-6.27(0.8\%)}(\text{approx})\text{pb},$

- NNLL in one-particle inclusive kinematics: (Kidonakis 14) +2.7% relative to NNLO; $\Delta \sigma_{t\bar{t}}^{N^3LO_{app}} = \frac{+2.9\%}{-2.0\%}$ (scale)
- Including subleading collinear; $\beta \rightarrow 1$ terms (Muselli et al. 15) +4.2% relative to NNLO (soft only: +2.3%);

$$\Delta \sigma_{t\bar{t}}^{\rm N^3LO_{app}} = \pm 2.7\% (\text{scale}) \pm 1.9\% (\text{approx})$$

Applications of total cross section measurements:

• Pole mass

 $m_t = 173.8^{+1.7}_{-1.8} \text{GeV}$

- from σ_{tt} measurement (CMS 16)
- Strong coupling:

 $\alpha_s(M_Z) = 0.1177^{+0.0034}_{-0.0036}$

(Klijnsma/Bethke/Dissertori/Salam 17)

- use only PDFs that do not fit σ_{tt}
- m_t uncertainty included in error

Differential NNLO QCD calculation (Czakon/(Fiedler)/Heymes/Mitov 16)

- NLO fast tables (Czakon/Heymes/Mitov 17)
- use in PDF fits (Czakon/Hartland/Mitov/Nocera/Rojo 16)

Soft-gluon resummation for p_T , $M_{t\bar{t}}$ distributions

(Kidonakis; Ahrens et al.; low p_T : Zhu et al; Catani et al; boosted tops: Ferroglia et al.) **Matching** of NNLO QCD with NNLL soft-gluon resummation in pair-invariant mass kinematics $\left(1 - \frac{M_{t\bar{t}}}{\hat{s}}\right) \rightarrow 0.$ (Czakon et al.18)

- further "boosted-soft" resummation of $\ln(m_t^2/\hat{s})$ terms
- scale choices
 - $\mu_f = H_T/4 = \frac{1}{4}(\sqrt{m_t^2 + p_{T,t}^2} + \sqrt{m_t^2 + p_{T,\bar{t}}^2})$ for $M_{t\bar{t}}$ spectrum

-
$$\mu_f = m_T/2$$
 for p_t spectrum

minimize higher-order corrections

EW corrections

Photon induced $\mathcal{O}(\alpha_s \alpha)$ contributions: (\Rightarrow LUXQED PDF (Manohar et al. 16))

Additive/Multiplicative combination of NLO-EW and NNLO-QCD (Czakon et al. 17)

- EW = $LO_{\mathcal{O}(\alpha_s \alpha)} + NLO_{\mathcal{O}(\alpha_s^2 \alpha)} + LO_{(\alpha^2)} + NLO_{\mathcal{O}(\alpha_s \alpha^2) + \mathcal{O}(\alpha^3)}$
- γg initial state included in $LO_{\mathcal{O}(\alpha_s \alpha)}$
- $EW \times QCD = EW + QCD + (K_{QCD}^{NLO} 1)NLO_{\mathcal{O}(\alpha_s^2 \alpha)}$ expected to describe NNLO $EW_{Sudakov} \times QCD_{soft}$ corrections at $\mathcal{O}(\alpha_s^3 \alpha)$.

EWres

C. Schwinn

Hadronic $t\bar{t}$ production

Additive/Multiplicative combination of NLO-EW and NNLO-QCD (Czakon et al. 17)

- EW = $LO_{\mathcal{O}(\alpha_s \alpha)} + NLO_{\mathcal{O}(\alpha_s^2 \alpha)} + LO_{(\alpha^2)} + NLO_{\mathcal{O}(\alpha_s \alpha^2) + \mathcal{O}(\alpha^3)}$
- γg initial state included in $LO_{\mathcal{O}(\alpha_s \alpha)}$
- EW × QCD = EW + QCD + $(K_{\text{QCD}}^{\text{NLO}} 1)$ NLO $_{\mathcal{O}(\alpha_s^2 \alpha)}$ expected to describe NNLO EW_{Sudakov} × QCD_{soft} corrections at $\mathcal{O}(\alpha_s^3 \alpha)$.

EWres

Parton-shower merging of $t\bar{t}$ and $t\bar{t}j$ with NLO QCD+EW (Gütschow, Lindert, Schönherr 18)

- Includes exact virtual EW corrections, real γ in YFS
- merged with $t\bar{t} + 2, 3, 4j$ at LO

Top production and decay in **narrow-width** approximation:

$$\frac{1}{(p^2 - m_t^2)^2 + (m_t \Gamma_t)^2} \Rightarrow \frac{2\pi}{2\Gamma_t m_t} \delta(p^2 - m_t^2) \Rightarrow \sigma_{pp' \to b\bar{b}\,4f} \Rightarrow \sigma_{pp' \to t\bar{t}} \times \frac{\Gamma_{t \to bf_1 f_2}}{\Gamma_t} \frac{\Gamma_{\bar{t} \to \bar{b}f_3 f_4}}{\Gamma_t}$$

- NLO QCD including spin correlations (Bernreuther et.al. 04, Melnikov/Schulze 09, Campbell/Ellis 12); NLO QCD+EW (Bernreuther/Si 10)
- NNLO_{approx} QCD (Gao/Papanastasiou 17)

Top production and decay in **narrow-width** approximation:

$$\frac{1}{(p^2 - m_t^2)^2 + (m_t \Gamma_t)^2} \Rightarrow \frac{2\pi}{2\Gamma_t m_t} \delta(p^2 - m_t^2) \Rightarrow \sigma_{pp' \to b\bar{b}\,4f} \Rightarrow \sigma_{pp' \to t\bar{t}} \times \frac{\Gamma_{t \to bf_1 f_2}}{\Gamma_t} \frac{\Gamma_{\bar{t} \to \bar{b}f_3 f_4}}{\Gamma_t}$$

- NLO QCD including spin correlations (Bernreuther et.al. 04, Melnikov/Schulze 09, Campbell/Ellis 12); NLO QCD+EW (Bernreuther/Si 10)
- NNLO_{approx} QCD (Gao/Papanastasiou 17)

Off-shell calculations including finite-width effects, non-resonant diagrams, non-factorizable corrections

• NLO QCD for $pp \rightarrow b\bar{b}\ell\ell\nu\nu$ (Bevilaqua et al. 10, Denner et al. 10; Heinrich et al. 13), m_b -effects (Cascioli et al. 13), NLO EW (Denner/Pellen 16), NLO QCD for $pp \rightarrow b\bar{b}\mu^-\bar{\nu}_{\mu}jj$ (Denner/Pellen 17)

- Comparison of NWA and off-shell NLO QCD calculations
 - Accuracy of NWA $\sim \frac{\Gamma_t}{m_t} \lesssim 1\%$ for σ_{tot} and generic kinematics
 - Finite-width effects; NLO decay corrections $\gg 10\%$ near kinematic edges

(Denner et al. in Les Houches 2011)

- Comparison of NWA and off-shell NLO QCD calculations
 - Accuracy of NWA $\sim \frac{\Gamma_t}{m_t} \lesssim 1\%$ for σ_{tot} and generic kinematics
 - Finite-width effects; NLO decay corrections $\gg 10\%$ near kinematic edges

Predictions for $t\bar{t}$ production and decay

- PS matching of $t\bar{t}$ production and decay
 - hvq: NLO on-shell production; PS with decay correction (Frixione/Nason/Ridolfi 07)
 - *ttdec*: NLO in production/decay with NWA (Campbell/Ellis/Nason/Re 14)
 - $b\bar{b}4\ell$: full NLO with off-shell effects (Jezo/Lindert/Nason/Oleari/Pozzorini 16)

• effects on mass determination estimated

from $m_{b\ell}$ peak position

(Ferrario/Jezo/Nason/Oleari 18)

	PS only		full	
	No smearing	smearing	No smearing	smearing
$b\overline{b}4\ell$	$172.522 { m ~GeV}$	$171.403~{ m GeV}$	$172.793 { m GeV}$	172.717 GeV
$t\bar{t}dec - b\bar{b}4\ell$	$-18\pm2~{\rm MeV}$	$+191\pm2~{\rm MeV}$	$+21\pm 6~{ m MeV}$	$+140\pm2~{\rm MeV}$
$hvq - b\overline{b}4\ell$	$-24\pm2~{\rm MeV}$	$-89\pm2~{\rm MeV}$	$+10\pm 6~{\rm MeV}$	$-147\pm2~{\rm MeV}$

- PS matching of $t\bar{t}$ production and decay
 - *hvq*: NLO on-shell production; PS with decay correction (Frixione/Nason/Ridolfi 07)
 - $t\bar{t}dec$: NLO in production/decay with NWA (Campbell/Ellis/Nason/Re 14)
 - $b\bar{b}4\ell$: full NLO with off-shell effects (Jezo/Lindert/Nason/Oleari/Pozzorini 16)
- effects on mass determination estimated

from $m_{b\ell}$ peak position

(Ferrario/Jezo/Nason/Oleari 18)

	No smearing		15 GeV smearing	
	He7.1	Py8.2 - He7.1	He7.1	Py8.2 - He7.1
$b\overline{b}4\ell$	$172.727 { m ~GeV}$	$+66\pm7~{\rm MeV}$	$171.626~{\rm GeV}$	$+1091\pm2~{\rm MeV}$
$t\bar{t}dec$	$172.775 \mathrm{GeV}$	$+39\pm5~{\rm MeV}$	$171.678~{ m GeV}$	$+1179\pm2~{\rm MeV}$
hvq	173.038 GeV	$-235\pm5~{\rm MeV}$	$172.319~{ m GeV}$	$+251\pm2~{\rm MeV}$

• Larger effects found from template fits using partonic results

(Heinrich et al. 17)

• interpretation of kinematic measurements in terms of pole mass or MC mass controversial (Hoang/Stewart 08; Nason 2018)

Summary

Total cross section

- state of the art: NNLO QCD with $\pm 5\%$ scale uncertainty
- NNLL/N³LO_{approx}: reduced scale uncertainty;
 1 2% systematic uncertainty

Differential cross sections

- $\bullet\,$ NNLO QCD+NNLL for boosted tops
 - dynamical scale choices reduce higher-order corrections
- Combination of QCD with NLO EW
 - additive/multiplicative combinations, PS merging
 - improves agreement with data for large p_t
- NLO QCD description with off-shell effects
 - significant off-shell effects near kinematic edges
 - studies to estimate effect on m_t measurement

Backup slides

Backup slides

14

• Top-pair production dominated by $\beta \sim 0.6$ \Rightarrow justification of threshold approximation?

 $\frac{d\sigma}{d\beta} = \frac{8\beta m_t^2}{s(1-\beta^2)^2} L(\beta,\mu_f)\hat{\sigma}, \qquad (\text{Bärnreuther/Czakon/Mitov 12; Czakon/Fiedler/Mitov 13})$

- \Rightarrow threshold corrections give estimate of higher-order corrections
- \Rightarrow careful estimate of uncertainties necessary
- resummation not mandatory for $t\bar{t}$ production at LHC
- \Rightarrow compare resummed results to fixed-order expansions

NNLL vs NNLO

Reduction of scale uncertainty from threshold resummation

$$\sigma_{t\bar{t}}^{\text{NNLO}}(13\text{TeV}) = 802.83^{+28.10(3.5\%)}_{-44.85(5.6\%)}\text{pb} \Rightarrow \begin{cases} \text{NNLL}(\text{top} + +) : 821.37^{+20.28(2.5\%)}_{-29.60(3.6\%)}\text{pb} \\ \text{NNLL}(\text{topixs}) : 806.96^{+25.59(3.2\%)}_{-40.36(5.0\%)}\text{pb} \end{cases}$$

top++: Mellin space resummation (Sterman 87; Catani/Trentadue 89)

• Includes 2-loop constant term H_2 in threshold expansion

$$\sigma_{t\bar{t}}^{
m NLLL}|_{H_2=0} = 812.20 \ \mathsf{pb}$$

topixs: combined soft/Coulomb resummation

- RGE for momentum-space resummation (Becher/Neubert 06)
- dependence on scales μ_f , $\mu_h \sim 2M$: $\Delta_{\text{scale}} \sigma_{t\bar{t}}^{\text{NNLL}} = \frac{+15.64}{-37.71} \text{ pb}$
- resummation uncertainty: choice of $\mu_s \sim M\beta^2$, kinematic ambiguities, higher-order terms: $\Delta_{\text{res}}\sigma_{t\bar{t}}^{\text{NNLL}} = \frac{+20.26}{-14.37}$ pb
- Includes bound-state effects $\sigma_{t\bar{t}}^{\text{NNLL}}|_{\text{BS}} = 2.8 \text{ pb}$

Input to resummation formula at N³LL

- Constant in NNLO thresh. expansion (Bärnreuther/Czakon/Fiedler 13)
- 2-loop soft function for singlet/octet (Belitzky 98;Becher/Neubert/Xu 07; Czakon/Fiedler 13)
- Coulomb function:
 - NNLO Green function sums terms $\alpha_s^n/\beta^n \times (\alpha_s^2, \alpha_s v, v^2)$ (Beneke/Signer/Smirnov; Hoang/Teubner 99,...)
 - spin-dependent $\alpha_s^3 \ln^{2,1} \beta$ terms from N³LO Green function, only known fully for $e^-e^+ \rightarrow t\bar{t}$ (Beneke et al. 16)
- RGE functions
 - 4-loop γ_{cusp} (Moch/Ruijl/Ueda/Vermaseren/Vogt 17; not needed for N³LO_{app})
 - 3-loop collinear anom. dim. (Moch/Vermaseren/Vogt 04/05)
 - missing: 3-loop massive soft anomalous dimension (massless: Almelid/Duhr/Gardi 15)