Highlights from tī+X at **ATLAS** and **CMS**

Rencontres de Blois June 6th 2018

Andrew Brinkerhoff

abrinke1@cern.ch

What is 'tī+X'?

- For the purposes of this talk, tī produced in association with visible (or visibly-decaying) particles
 - Don't have time to talk about the many $t\bar{t}+p_T miss$ (invisible) searches
 - Includes Standard Model production: $t\bar{t}+W/Z/\gamma$, as well as $t\bar{t}+t\bar{t}$
 - tī+H also very important, but covered in two separate talks^[1,2]
 - Measure SM top quark couplings, probe effective couplings
 - Events with many objects (leptons, jets, p_T miss), challenging analyses
- In beyond-SM production, top+X pairs typically produced from decays of heavier new physics particles
 - Very high energy / mass scales, boosted tops and bosons

[1] Roberto Di Nardo, ATLAS : https://indico.cern.ch/event/677667/contributions/3011173/
[2] Daniel Salerno, CMS : https://indico.cern.ch/event/677667/contributions/2996225/

UF FLORIDA

tt cross sections at 13 TeV

<u>ATLAS eμ: 1606.02699</u> <u>CMS eμ: 1611.04040</u> <u>CMS ℓv+jj: 1701.06228</u>

- ATLAS and CMS made precise measurements of the inclusive tī cross sections at 13 TeV in 2015 data (2.2 - 3.2 fb⁻¹)
- Statistical uncertainties negligible, no need to add 2016 dataset, which contained 10 - 15 times more data (36 fb⁻¹)
- General agreement with theoretical predictions, and between channels

Differential tt cross sections $\frac{\text{ATLAS } e\mu: 1612.05220}{\text{ATLAS } \ell\nu+j: 1708.00727}}{\text{CMS } \ell\nu+j: 1803.03991}$

- Differential cross-section measurements are interesting and challenging - and can always benefit from more stats
- Probe hidden new physics scenarios

 (e.g. very high mass scale) using very
 precise measurements of tī system
 kinematics and correlations
 - Also validate and tune / correct MC simulation important!
- Use tools which are fundamental to other tī+X searches and measurements, e.g. kinematic reconstruction of tī system from its decay products

Andrew Brinkerhoff

ATLAS Simulation $\sqrt{s} = 13 \text{ TeV}$

Differential tt cross sections CMS em: TOP-17-014

- Primarily use $b\ell v + bjj$ and $b\ell v + b\ell v$ decay modes at 13 TeV
 - Probe many observables (p_T, *y*, etc.) of top and its decay products
 - Also use boosted bjj + bjj measurement to reach higher in p_T
- Both CMS and ATLAS see softer $p_T(top)$ than pred. by MC / theory

tī+X analyses

Final	ATLAS			CMS		
state	Dataset	ID	Link	Dataset	ID	Link
tī+γ	20 fb ⁻¹ , 8 TeV	JHEP 11	<u>1706.03046</u>	20 fb ⁻¹ , 8 TeV	JHEP 10	<u>1706.08128</u>
t ī +W	2.2 fb-1 12 To W		<u>1609.01599</u>	36 fb ⁻¹ , 13 TeV	TOP-17-005*	<u>1711.02547</u>
tī+Z	5.2 ID ⁻¹ , 15 Iev	EPJC //				
tīH (bb)	36 fb ⁻¹ , 13 TeV	PRD 97	<u>1712.08895</u>		HIG-17-035*	<u>1804.02610</u>
$t\bar{t}H$ (W/Z/ τ)	36 fb ⁻¹ , 13 TeV	PRD 97	<u>1712.08891</u>	5+20+36 fb ⁻¹ , 7+8+13 TeV		
tīΗ (γγ)	36 fb ⁻¹ , 13 TeV	HIGG-16-21*	<u>1802.04146</u>			
tī+tī	26 fb-1 12 ToV	EXOT-16-13*	<u>1803.09678</u>	36 fb ⁻¹ , 13 TeV	EPJC 78	<u>1710.10614</u>
t ī +HH/ZZ	30 ID ² , 13 Iev			36 fb ⁻¹ , 13 TeV	B2G-17-011*	<u>1805.04758</u>
tī+ττ				36 fb ⁻¹ , 13 TeV	B2G-16-028*	<u>1803.02864</u>
tī+gg				36 fb ⁻¹ , 13 TeV	PLB 778	<u>1711.10949</u>

• Most final states covered by both ATLAS and CMS with full 2016 dataset

* Submitted for publication

UF UNIVERSITY of FLORIDA

<u>ATLAS: 1609.01599</u> <u>CMS: 1711.02547</u>

tt decay modes			
$0 \ell v + 4 j + 2 b$	55.6%		
$1 \ell v + 2 j + 2 b$	37.9%		
$2\ell v + 0j + 2b$	6.5%		
$W \rightarrow \ell^{\pm} v$	25.4%		
$Z \rightarrow \ell^+\ell^-$	6.8%		

Andrew Brinkerhoff

7

$t\bar{t}+W$ and $t\bar{t}+Z$

- With ~10x more events in 2016 than 2015, CMS can measure ttw cross-section within 22%, ttZ within 14%
 - ATLAS uncertainties mostly statistical, expect update soon
 - CMS many small uncertainties, statistical ≈ systematic
- CMS uses 2D ttZ vs. ttW to set limits on 6-dimension EFT operators, constrain new physics (stay tuned! ^[1])

<u>ATLAS: 1609.01599</u> <u>CMS: 1711.02547</u>

SM σ(t t W)	628 ± 82 fb
ATLAS	1500 ± 790 fb
CMS	770 ± 170 fb
SM $\sigma(t\bar{t}Z)$	839 ± 101 fb
ATLAS	920 ± 290 fb
CMS	990 ± 140 fb

[1] See <u>https://indico.cern.ch/event/677667/contributions/2996198/</u> [2] Röntsch and Schulze : <u>arxiv.org/abs/1501.05939</u>

tī+tī (4-top)

- 4-top production the highest-mass, highestmultiplicity SM process probed at the LHC
 - Very low SM cross-section (~10 fb), stats limited
- Different approaches from CMS and ATLAS
 - High-purity vs. high-stats + complex kinematics
 - CMS does SM search, ATLAS constrains EFT 4-top

<u>ATLAS: 1803.09678</u> <u>CMS: 1710.10614</u>

tī+tī (4-top)

- For more boosted EFT signature, ATLAS uses large, high-pT jets to tag Higgs → bb and top → bjj decays
 - Categorize on # of jets, b-jets, H-tags, and top-tags
 - Sensitive region : $\ge 4 b's + \ge 6 j's + \ge 2 H$ +top-tags
- CMS categorizes on # of leptons, jets, and b-jets

<u>ATLAS: 1803.09678</u> <u>CMS: 1710.10614</u>

10-

10-2

• ATLAS uses 0ℓ and 10^{-1} H-tagged jets (com 2ℓ 10^{-2}

UF FIORID

• CMS uses top/H-tagged jets in $1\ell_{\mathcal{F}}$ and $\ell_{\mathcal{F}}$ and $\ell_{\mathcal{F}}$ in $\mathcal{F}_{\mathcal{F}}$ or $\mathcal{H}_{\mathcal{T}}$ or $\mathcal{H}_{\mathcal{T}}$ of $\mathcal{H}_{\mathcal{T}}$

11

Vector quarks : $t\bar{t}$ + multi-Z/H $\frac{ATLAS: 1803.09678}{CMS: 1805.04758}$

- Despite taking very different approaches, ATLAS and CMS achieve very similar limits, excluding T masses below ~ 1 TeV
- At this mass scale the T decay products are *very* boosted : expect even greater use of top- and Higgs-tagged jets in the future

12

Lepto-quarks : $t\bar{t}+\tau\tau$

CMS: 1803.02864

Andrew Brinkerhoff

14

tī+X results

Final	SM	ATLAS		SM ATLAS			CMS	
state	Xsec	Dataset	Obs. Xsec / Lim.	Dataset	Obs. Xsec / Lim.			
t τ +γ	151 fb	20 fb ⁻¹ , 8 TeV	$139 \pm 18 \text{ fb} (13\%)$	20 fb ⁻¹ , 8 TeV	$127 \pm 27 \; fb \; (21\%)$			
t t +W	626 fb	3.2 fb-1 12 ToV	$1500 \pm 790 \text{ fb} (53\%)$	26 fb-1 12 ToV	$770 \pm 170 \text{ fb} (22\%)$			
tī+Z	846 fb	5.2 ID ⁻ , 15 Iev	920 ± 290 fb (32%)	50 ID ² , 15 Ie v	990 ± 140 (14%)			
tīH (bb)	294 fb	36 fb ⁻¹ , 13 TeV	$247 \pm 181 \; \text{fb} \; (73\%)$		212 ± 128 fb (60%)			
$t\bar{t}H (W/Z/\tau)$	154 fb	36 fb ⁻¹ , 13 TeV	$240 \pm 43 \text{ fb} (18\%)$	36 fb ⁻¹ , 13 TeV	189 ± 66 fb (35%)			
tīΗ (γγ)	1.2 fb	36 fb ⁻¹ , 13 TeV	$0.7 \pm 0.8 \; { m fb} \; (114\%)$		$2.5 \pm 1.0 \; \text{fb} \; (40\%)$			
tt+tt *	10.7 fb	36 fb ⁻¹ , 13 TeV	EFT < 16 fb	36 fb ⁻¹ , 13 TeV	$SM = 16.9 \pm 12.6 \text{ fb}$			
t t +HH/ZZ		36 fb ⁻¹ , 13 TeV	T mass > 0.99 TeV	36 fb ⁻¹ , 13 TeV	T mass > 1.14 TeV			
tī+ττ				36 fb ⁻¹ , 13 TeV	LQ mass > 0.90 TeV			
tt+gg				36 fb ⁻¹ , 13 TeV	top* mass > 1.2 TeV			

* ATLAS places limits on higher-energy EFT 4-top production, while CMS searches for SM 4-top events

UF FLORIDA

Summary

- High-luminosity physics in 13 TeV pp collisions is allowing us to push into unexplored territory of both SM and BSM physics
- For SM tī+X, increasing use of sophisticated reconstruction techniques to resolve combinatorics of jets, leptons, and p_T ^{miss}
- For BSM tī+X, mass limits on most models are passing the TeV mark -- future analyses increasingly in the boosted regime
- Looking forward to results with 3 4 times more data in 2019!

BACKUPS

tt+X

tī+Z : probing top-Z coupling

Figure 2: NLO distributions of $\Delta \phi_{\ell\ell}$ and $p_{T,Z}$ for SM $t\bar{t}Z$ couplings and with anomalous dipole couplings $C_{2,V}^Z = C_{2,A}^Z = 0.2$. The distributions are normalized to the overall cross section. The cuts of Eq. (3.2) are applied.

• $t\bar{t}$ +Z kinematics sensitive both to vector vs. axial component of top-Z coupling (C_V vs. C_A) and to anomalous dipole couplings

[1] Röntsch and Schulze : <u>arxiv.org/abs/1501.05939</u>

tī+W and tī+Z : ATLAS uncertainties

Uncertainty	$\sigma_{t\bar{t}Z}$	$\sigma_{t\bar{t}W}$
Luminosity	2.6%	3.1%
Reconstructed objects	8.3%	9.3%
Backgrounds from simulation	5.3%	3.1%
Fake leptons and charge misID	3.0%	19%
Signal modelling	2.3%	4.2%
Total systematic	11%	22%
Statistical	31%	48%
Total	32%	53%

 $\sigma_{t\bar{t}W} = 1.50 \pm 0.72 \text{ (stat.)} \pm 0.33 \text{ (syst.) pb}$

 $\sigma_{t\bar{t}Z} = 0.92 \pm 0.29 \text{ (stat.)} \pm 0.10 \text{ (syst.) pb}$

• Dominated by statistical uncertainty

UF FLORIDA

tī+W and tī+Z : CMS uncertainties

	Uncertainty from	Impact on the measured	Impact on the measu	ured
Source	each source (%)	tīW cross section (%)	ttZ cross section (%	%)
Integrated luminosity	2.5	4	3	
Jet energy scale and resolution	2–5	3	3	
Trigger	2–4	4–5	5	
B tagging	1–5	2–5	4–5	
PU modeling	1	1	1	
Lepton ID efficiency	2–7	3	6–7	$\sigma(pp \rightarrow t\bar{t}W) = 0.77^{+0.12} (stat)^{+0.13} (syst) pb.$
Choice in $\mu_{\rm R}$ and $\mu_{\rm F}$	1	<1	1	$(PP) = (0.11) = 0.11 (0.00) = 0.12 (0.00) P^{-2}$
PDF	1	<1	1	$1 22 \pm 0.19$ (, , ,) ± 0.20 (, ,) ± 0.13 (1)
Nonprompt background	30	4	<2	$1.23^{+0.19}_{-0.18}$ (stat) $^{+0.26}_{-0.18}$ (syst) $^{+0.16}_{-0.12}$ (theo)
WZ cross section	10-20	<1	2	
ZZ cross section	20		1	$\sigma(pp \rightarrow t\bar{t}Z) = 0.99^{+0.09}_{-0.08} \text{ (stat)}^{+0.12}_{-0.10} \text{ (syst) pb.}$
Charge misidentification	20	3		
Rare SM background	50	2	2	$1.17^{+0.11}_{-0.10}$ (stat) $^{+0.14}_{-0.12}$ (svst) $^{+0.11}_{-0.12}$ (theo)
$t(\bar{t})X$ background	10–15	4	3	
Stat. unc. in nonprompt background	5-50	4	2	
Stat. unc. in rare SM backgrounds	20-100	1	<1	

14

Total systematic uncertainty

ical uncertainties

on cross section

12

cated luminosity, lepton es, nonprompt lepton, and ct"

CMS tī+W : BDT in SS 2l events

22

UF FLORIDA