

Single top-quark production @ the LHC

- The top-quark is the **most massive** known fundamental particle (m_t =173.3± 0.8 GeV) (arXiv:1403.4427), relatively young particle (discovery in 1995 at the Tevatron).
- Unique among quarks, it decays before hadronization starts → Possibility to study a bare quark.
- Important to test SM, tune MC and constrain PDFs
- Access to CKM element $|V_{tb}|$ through **Wtb** vertex.
- Principal background source to many new physics channels in HEP.
- Gate for new physics, it has a strong coupling with many exotic particles in Beyond SM theories.

CMS Integrated Luminosity, pp

- Large integrated luminosity accumulated by experiments.
- Excellent detector performance.
- LHC is a top-quark factory
- Single top-quark measurements enter the precision domain.
- Investigation of rare decays.

Single top-quark production @ the LHC

Three single top-quark production channels through weak interaction:

Important to measure all the 3 channels for their different sensibility to *Wbt* vertex.

@ 13 TeV

With the increase of energy and luminosity, the ability to study process with very low cross-section ("rare SM processes") at LHC became possible.

Blois2018 C. García (IFIC-Valencia)

tyg-channel

Outline

Only the newest single top-quark results by ATLAS and CMS will be covered here

ATLAS	<i>t</i> -channel	tW-channel	s-channel	<i>tZq</i> -channel	<i>tyq</i> -channel
7 TeV	PRD 90, 1120006 (2014)	ATLAS-CONF-2011-204	ATLAS-CONF-2011-118		
8 TeV	EP. J. C77 (2017) 531 JHEP 12 (2017) 017 (anomalous couplings) JHEP 04 (2017) 124: (polarisation)	JHEP 01(2016)064	PLB 756 (2016) 228		
13 TeV	JHEP 04(2017)086	JHEP 01 (2018) 63 EPJ. C 78 (2018) 186 (diff) Paper in preparation (tW/tt interference)		PLB 780 (2018) 557	
CMS	<i>t</i> -channel	<i>tW</i> -channle	s-channel	<i>tZq</i> -channel	<i>tyq</i> -channel
CMS 7 TeV	<i>t</i> -channel JHEP 12(2012)035	<i>tW</i> -channle PRL 110(2013)0022003	s-channel JHEP 09(2016)027	<i>tZq</i> -channel	<i>tγq</i> -channel
				<i>tZq</i> -channel JHEP 07(2017)003	<i>tyq</i> -channel

arXiv:1805.07399

Main Background

 e^{+}

- Second largest single top-quark production channel at LHC.
- Studied decay mode:
 - 2 isolated high p_{τ} Opposite Sign leptons (OS).
 - 1 *b*-tagged jet.

Event categorization based on (n-jet,n-btag) after dileptonic

SR: dominant background tt events

CR: Enriched in tt events

arXiv:1805.07399

- Boosted Decision Tree BDT to separate tW form tt background.
- Binned maximum likelihood fit to extract the cross-section.

Simultaneous fit to the BDT output, in SR: (*1jet*, *1b*-tag) and (*2jets*, *1b*-tag).

 $\times 10^3$ 35.9 fb⁻¹ (13 TeV) Events **CMS** Data $tW (\mu = 0.88)$ Non-W/Z 10 DY VV+ttV Postfit Prefit uncertainty uncertainty Prefit Data/MC 1j1b BDT output bin The CR (2jets, 2b-tag) is used to constrain the main sources of background using the distribution of the p_T of the subleading jet.

JHEP 01 (2018) 63

ATLAS has followed a similar strategy using 3.2 fb⁻¹ (2015).

Main sources of systematic uncertainty:

CMS

- Lepton efficiency and Jet energy scale.
- tt μ_R , μ_F scale variations and tt normalization

ATLAS

- Jet-energy-scale and Jet energy resolution.
- NLO ME generator choice.

JHEP 01 (2018) 63

arXiv:1805.07399

$$\sigma_{CMS} = 63.1 \pm 1.8(stat.) \pm 6.4(syst.) \pm 2.1(lumi.)pb$$
 10%
 $\sigma_{ATLAS} = 94 \pm 10(stat.) \stackrel{+28}{-22}(syst.) \pm 2(lumi.)pb$ 29%

$$\sigma_{Theory} = 71.7 \pm 1.8(scale) \pm 3.4(PDF)pb$$
 (*)

Both measurements consistent with the SM prediction

(*) (N. Kidinakis, arXiv:1506.04072)

Summary of single top-quark cross-sections

- ATLAS and CMS measurement of the single top-quark production cross-sections in various channels as a function of the center-of-mass energy.
- The measurements are compared to theoretical calculations based on:
 NLO QCD, NLO QCD complemented with NNLL resummation and NNLO QCD (t-channel only).

EPJ. C 78 (2018) 186

- First measurement of the tW differential cross-section.
- SR: (1jet,1b-tag) + cut on BDT output score to increase S/B.
- Measured as a function of particle-level observables related with kinematic properties of tW and sensitive to differences in the theoretical modelling:
 - $E(b) \rightarrow$ probe the top-quark production.

• $m(l_1b)$, $m(l_2b) \rightarrow$ probe the top-quark decay (angular correlations due to spin correlations).

• E(llb), $m_T(llvvb)$, $m(llb) \rightarrow \text{prove the } tW \text{ system.}$

EPJ. C 78 (2018) 186

Main uncertainties cancel when normalise to the cross-section

Largest uncertainties come from the data statistics and tt and tW modelling

Observable Degrees of freedom	E(b))	<i>m</i> (ℓ 5	₁ <i>b</i>)	<i>m</i> (ℓ 3	₂ b)	E(\(\ell \) 5	b)	m _T (llvvb)	m(ℓ. 5	$\ell b)$
Prediction	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p	χ^2	p
POWHEG+PYTHIA 6 (DR)	4.8	0.31	5.7	0.34	2.6	0.45	8.1	0.15	2.0	0.56	4.0	0.55
POWHEG+PYTHIA 6 (DS)	5.0	0.29	6.1	0.30	2.6	0.46	9.1	0.11	2.4	0.49	4.4	0.50
aMC@NLO+Herwig++	5.6	0.23	5.4	0.37	2.4	0.49	8.7	0.12	1.8	0.61	3.6	0.61
POWHEG+Herwig++	6.2	0.18	8.1	0.15	2.3	0.52	11.0	0.05	2.0	0.57	5.2	0.40
POWHEG+PYTHIA 6 radHi	4.8	0.30	5.3	0.38	2.5	0.48	7.9	0.16	/1.9	0.60	3.7	0.60
POWHEG+PYTHIA 6 radLo	5.0	0.29	5.8	0.33	2.6	0.45	8.4	0.14	2.1	0.56	4.0	0.55

- Reasonable agreement with MC prediction within uncertainties.
- Slightly harder $E(\ell\ell b)$ spectrum in data.
- Powheg+Herwig++ deviate slightly more from data.

Quantum interference tWb/tt

As measurements and searches increase their sensitivity, they began **to prove regions of phase space that are not well described by separable leading order matrix element calculations**, that is the case of **tWb production**.

Due to their identical final states, processes with ONE or TWO timelike top-quark propagators interfere.

Quantum interference tWb/tt

The **cross-section for WWbb** will be proportional to

$$\sim |\mathcal{A}_{t\bar{t}}|^2 + |\mathcal{A}_{tWb}|^2 + 2\text{Re}\{\mathcal{A}_{t\bar{t}}^*\mathcal{A}_{tWb}\}$$

Interference effects are estimated by comparing ad-hoc prescriptions:

Diagram Removal (DR):

Wtb prediction ~ $|\mathcal{A}_{tWb}|^2$

arXiv:0805.3067

Diagram Subtraction (DS): Wbt takes entire expression, minus a gauge invariant –term (φ) that cancels tt "on average".

tWb prediction
$$|\mathcal{A}_{t\bar{t}}|^2 + |\mathcal{A}_{tWb}|^2 + 2\text{Re}\{\mathcal{A}_{t\bar{t}}^*\mathcal{A}_{tWb}\} - \mathbf{\phi}$$

Diagram Removal 2 (DR2):

Wtb prediction

$$\sim |\mathcal{A}_{tWb}|^2 + 2\text{Re}\{\mathcal{A}_{t\bar{t}}^*\mathcal{A}_{tWb}\}$$

arXiv:1207.1071, arXiv:1607.05862

Recently, a generator of $\ell^* \nu \ell^- \nu bb$ process was implemented in Powheg (fixed-order calculations with the full NLO + matched to PS) with an inclusive treatment \rightarrow interference is "automatically" included.

arXiv:1607.04538

$$m_{b\ell}^{ ext{minimax}} \equiv \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\}$$

$$t\bar{t}$$
 at LO: $m_{b\ell}^{ ext{minimax}} < \sqrt{m_t^2 - m_W^2}$ (kinematic endpoint)

tt m_t tWb $m_{b\ell}^{ ext{minimax}}$

Quantum interferences tWb/tt

Powheg+Pythia8 $\ell^+ \nu \ell^- \nu b b$ (explicitly includes interference) describes the data across the full spectrum.

Powheg+Pythia8 *tf+tW* with different strategies for the interference are considered:

- In the tail ($m_{b\ell}^{\rm minimax} \gtrsim m_t$) **DR** and **DS** predictions diverge, but they are consistent with data at $\sim 2\sigma$ level.
- DR2 describes well the data up to top-quark mass but deviates significantly for above.

Main uncertainties:

Top modelling (tt,tW, tt+HF)
Jet-energy-scale, b-tagging efficiency

tZq-channel

- Rare process: 2 orders of magnitude smaller that tW channel.
- Sensitive to tz coupling and triple gauge boson WWZ coupling.
- Possible deviation may indicate physics beyond the SM (FCNC, anomalous coupling).
- Trilepton final state:
 - 3 isolated high p_{τ} leptons.
 - 1 *b*-tagged jet.
 - 1 forward jet. $E_{\scriptscriptstyle T}^{\scriptscriptstyle miss}$.

tZq-channel @ 13TeV

CMS

Two BDT based in observable for the **1b-taged jet** and **2b-tagged jets** regions are used to enhance S/B + a weight for the hypothesis (signal, ttZ or WZ) is included in the input variables (base on MEM).

PL B780 (2018) 557

Neural Network is used to enhance S/B separation with 10 variables. Training with a mixture of all BG, except $t\bar{t}$ (low statistics).

tZq-channel@ 13 TeV

$$\sigma_{\text{CMS}}(tllq) = 123^{+33}_{-31}(\text{stat.})^{+29}_{-23}(\text{syst.}) \text{ fb} \quad 3.7(\mathbf{3.1})\sigma \text{ obs.}(\text{exp.})$$

$$\sigma_{\text{ATLAS}}(tZq) = 600 \pm 170(\text{stat.}) \pm 140(\text{syst.}) \text{ fb} \quad 4.2(\mathbf{5.4})\sigma \text{ obs.}(\text{exp.})$$

$$\sigma^{\text{SM}}(t\ell^+\ell^-q) = 94.2^{+1.9}_{-1.8}(\text{scale}) \pm 2.5 \text{ (PDF) fb}$$

$$\sigma^{\text{SM}}(tZq) = 800^{+49}_{-59} \text{ fb}$$

Main sources of systematic uncertainty **ATLAS**:

- •Jet-energy-scale.
- PDF and $tZq \mu_R$, μ_F scale variations .

CMS:

- Background normalization.
- $tZq \mu_R$, μ_F scale variations .

- First evidences of tZq production from two collaborations.
- Results are consistent with the SM predictions.

tyq-channel @ 13TeV

- Rare process: 2 orders of magnitude smaller that *t*-channel.
- Sensitive top-quark charge and top-quark electric and magnetic dipole moments.
- Possible deviation may indicate physics beyond the SM.
- Final state:
 - 1 isolated high p_T muon.
 - 1 isolated photon.
 - 1 *b*-tagged jet.
 - 1 forward jet

Main background:

- Jet misidentified as photon
 Real photon *tt, W*+jet, *Z*+jet
- *tt+y, Wy*+jet, *Zy*+jet

tyq-channel @ 13TeV

NEW

CMS-TOP-17-016

- Two BDTs are used for :
 - SR (1 b-tagged jet) and
 - *CR* (2 *b*-tagged jets) to get *tt+γ* background.
- A binned likelihood to extract:

$$\mathcal{B}(t\rightarrow \mu\nu b)\sigma(t\gamma j)$$

First evidence of the single top-quark production in association with a photon in the *t*-channel.

$$\mathcal{B}(t \to \mu \nu b) \sigma(t \gamma j) = 115 \pm 17(stat)^{+33}_{-27}(syst) \text{ fb}$$

Corresponding to a significance of 4.4 (3.0) σ obs. (esp.)

In agreement with the SM prediction of $81 \pm 4~\mathrm{fb}$

Main sources of uncertainty

- Jet energy scale.
- Signal modelling.
- *Zγ*+jets.
- b-tagging.

Conclusions

ATLAS and CMS have measured the single top-quark production cross-sections in various channels for various centre-of-mass energies.

NEW MEASUREMENTS @ 13 TeV

- New result on tW-channel for inclusive and differential cross-section has been presented.
- ATLAS has developed a novel method to distinguish different for the first time models of the **interference between** *tt* and *tWb* processes.
- First evidences of tZq production from the two collaborations.
- First evidences of tyq production from CMS.
- All measurements in good agreement (within uncertainties) with the state-of-the-art theoretical predictions.

BACKUP

Probing Wtb vertex from the cross-sections

- The single top-quark production cross-sections are proportional to $|f_{LV}V_{tb}|^2$.
- In the SM, $V_{\it tb}$ is very close to 1 and $f_{\it LV}$ value is exactly 1.
- New physics contribution could affect the valour of $f_{{\scriptscriptstyle LV}}$.

$$f_{\scriptscriptstyle LV} V_{\scriptscriptstyle tb} \, = \sqrt{rac{\sigma_{
m meas.}}{\sigma_{
m theo.}}}$$

- Measurement is independent of assumptions about the number of quarks generations or about the unitarily of the CKM matrix.
- Assumptions for the extractions:
 - Wtb interaction is a SM-like left-handed weak coupling.
 - $|V_{tb}| \gg |V_{td}|, |V_{ts}|$, i.e. BR $(t \rightarrow Wb)$.

 $|f_{LV}V_{tb}|$ results from all three single top-quark production processes are in agreement with the SM predictions.

Quantum interference tWb/tt

Novel method to distinguish different models of the interference between tt and tWb

- The contributions from doubly- and singly-resonant amplitudes (and hence also their interference) to the combined cross-section depend on the invariant mass of the bW pairs in the event (m_{bW})
- The lepton is used to proxy the *W*.
- Differential cross-section is measured with respect to the mass of a b-jet and a lepton (m_{bl})
- There is ambiguity in forming this mass, so:

$$m_{b\ell}^{\text{minimax}} \equiv \min\{\max(m_{b_1\ell_1}, m_{b_2\ell_2}), \max(m_{b_1\ell_2}, m_{b_2\ell_1})\}$$

ttbar at LO:
$$m_{b\ell}^{\mathrm{minimax}} < \sqrt{m_t^2 - m_W^2}$$
 (kinematic endpoint)

The region above the kinematic endpoint will be highly enriched in *tWb* .

Quantum interferences tWb/tt

Signal ttbar + tWb

Events with:

- 2 OS leptons.
- 2b-tagged jets.
- $ullet E_{\scriptscriptstyle T}^{\scriptscriptstyle miss}$

Rejection of low resonances and Z+jets:

$$m(ll)\!<\!10GeV$$

$$\left| m(ll) - m(Z) \right| < 15 GeV$$

- Dominant BG in the hight mass region is tt + Heavy Flavor (HF) with a b-jet form t-quark not b-tagged.
- Evaluated for 3 *b-jet* events (CR), the mass variable is calculated from the 2 *b*-tagged jets with highest p_{τ} .

Predictions given for both **DR and DS** schemes for *tW*.

High purity in *tW* events in the tail of the distributions.

tZq-channel @ 13TeV

PL B780 (2018) 557

Selected events:

- 3 leptons
- Z candidate
- 1b jets + 1 untagged jet

$$tZq \rightarrow (t \rightarrow blv)$$

 $(Z \rightarrow l^+l^-) q$

SR:

- $|m_{\ell\ell} m_Z| < 10 \ GeV \ (OSSF)$
- $m_{\mathrm{T}}(\ell_W, \nu) > 20 \; GeV$

VR to check BG modelling:

- Diboson: 1 jets (0-btagged j)
- tt: $|m_{\ell\ell} m_Z| > 10 \ GeV$

CR to normalize BG:

- Diboson: $m_{\mathrm{T}}(\ell_W, \nu) > 60 \; GeV$
- tt̄: ≥1 OSDF pair and not OSSF, 1b-tagged j

Neural Network is used to enhance S/B separation with 10 variables. Training with a mixture of all BG, except ttbat (low statistics).

tZq-channel @ 13TeV

PL B779 (2018) 358

Similar analysis carry out by CMS with regions defined according with the jet and b-jet multiplicities

$$tZq \rightarrow (t \rightarrow blv)$$

 $(Z \rightarrow l^{+}l^{-}) q$

$$ttZ \rightarrow (t \rightarrow b|v) (t \rightarrow b|v)$$

$$(Z \rightarrow |+|-)$$

$$WZ \rightarrow (W \rightarrow V)$$

 $(Z \rightarrow V^+V^-)$

3 leptons + 0bj

Two multivariate discriminators (BDT) based in observable for the 1b-jet and 2b-jets regions are used to enhance S/BG.

For each event, a weight for the hypothesis: signal, ttZ or WZ, base on Matrix Element Method (MEM) is included in the input variables.

20% improvement in the expected significance using MEM

CMS-TOP-17-018

Source	Uncertainty (%)
Experimental	
Trigger efficiencies	2.7
Electron efficiencies	3.2
Muon efficiencies	3.1
JES	3.2
Jet energy resolution	1.8
b tagging efficiency	1.4
Mistag rate	0.2
Pileup	3.3
Modeling	
${ m tar t}~\mu_{ m R}$ and $\mu_{ m F}$ scales	2.5
tW $\mu_{ m R}$ and $\mu_{ m F}$ scales	0.9
Underlying event	0.4
Matrix element/PS matching	1.8
Initial-state radiation	0.8
Final-state radiation	0.8
Color reconnection	2.0
B fragmentation	1.9
Semileptonic B decay	1.5
PDFs	1.5
DR-DS	1.3
Background normalization	
t t	2.8
VV	0.4
Drell-Yan	1.1
Non-W/Z leptons	1.6
tŧV	0.1
MC finite sample size	1.6
Full phase space extrapolation	2.9
Total systematic (excluding integrated luminosity)	10.1
Integrated luminosity	3.3
Statistical	2.8
Total	11.1 B

JHEP 01 (2018) 63

Source	$\Delta \sigma_{Wt}/\sigma_{Wt}[\%]$
Jet energy scale	21
Jet energy resolution	8.6
$E_{\mathrm{T}}^{\mathrm{miss}}$ soft terms	5.3
b-tagging	4.3
Luminosity	2.3
Lepton efficiency, energy scale and resolution	1.3
NLO matrix element generator	18
Parton shower and hadronisation	7.1
Initial-/final-state radiation	6.4
Diagram removal/subtraction	5.3
Parton distribution function	2.7
Non- $t\bar{t}$ background normalisation	3.7
Total systematic uncertainty	30
Data statistics	10
Total uncertainty	31

EPJ. C 78 (2018) 186

Unfold with iterative Bayesian method

EPJ. C 78 (2018) 186

Unfold with iterative Bayesian method

EPJ. C 78 (2018) 186

Quantum interferences tWb/tt

