HIGGS BOSON FERMIONIC PRODUCTION AND DECAY MODES WITH THE ATLAS DETECTOR

Stephen K. Chan on behalf of the ATLAS Collaboration Blois2018 6 June 2018

SM HIGGS FERMIONIC PRODUCTION AND DECAY

HIGGS LEPTON DECAYS: H->TT

- Analysis strategy—separate events based on • Leptonic or hadronic decays of tau's (II, Ih,
 - hh)
 - Higgs production (VBF, boosted ggF)
 - Further separation based on $p_T^{\tau\tau}$, $\Delta R_{\tau\tau}$, (and m_{ii} for VBF)
- Simulation and data-driven background estimation techniques
 - Main backgrounds: $Z \rightarrow \tau \tau$, mis-ID'd t's \bullet (multijet, W+jets), top, Z->II
- Final discriminant: SR di-tau invariant mass distributions as input to final likelihood fit for total $H \rightarrow \tau \tau$ cross section

 Signal theory (+14%,-9.0%), BG stats (+11%,-10%), JetEtMiss (+12%,-9%) Combined with Run 1: 6.4 σ (5.4 σ) observed (expected) excess; observation of H—> $\tau\tau$!

HIGGS QUARK DECAYS: VH(BB)

5 ATLAS Fermionic Higgs Production/ Decay S. Chan 2018.06.06

Next highest Yukawa coupling is to b-quarks Focus on VH with leptonically decaying V for trigger/

- background suppression
- Clear signature, no combinatoric ambiguity
- Good for searching for Hbb

VH(BB) ANALYSIS STRATEGY

6 ATLAS Fermionic Higgs Production/ Decay S. Chan 2018.06.06

- Signal region selections separated on basis of:

• Lepton multiplicity in V decay ($Z \rightarrow vv$, $W \rightarrow |v, Z \rightarrow |l)$ and jet multiplicity Main background normalizations are freely floating fit parameters Object variables used for fit input BDT's, cross-check by fitting mbb distribution

VH(BB) RESULTS

ATLAS Fermionic Higgs Production/ Decay S. Chan 2018.06.06

- Run 2 best fit μ =1.2±0.4; corresponds to observed (expected) 3.5 σ (3.0 σ) excess \bullet
- Combine with Run 1 for best fit μ =0.9±0.3; 3.6 σ (4.0 σ) excess lacksquare
 - First evidence of Hbb

• Signal modeling (0.17), flavor tagging (0.11), also background modeling and MC statistics

LOOKING FORWARD: VBF H(BB)

- Three analysis channels (selections + MVA)
 - All hadronic: two central, four central
 - Associated photon production: cleaner
- SR m_{bb} distributions as input to likelihood fit on signal strength, µ
 - Analytic background models
 - $\mu_{VBF} = 3.0 (+1.7, -1.6)$
 - $\mu_{\rm H} = 2.7 (+1.4, -1.3)$
- No significant excess observed

LOOKING FORWARD: VH(CC)

9 ATLAS Fermionic Higgs Production/ Decay S. Chan 2018.06.06

Much rarer (~20x) than VH(bb)

- SM $\sigma(pp \rightarrow ZH) \times BR(H \rightarrow cc) = 26 \text{ fb}$
- Similar strategy to VH(bb) cut-based
 - Charm tagging instead of b-tagging (41% WP instead of 70%)
 - Focus on ZH—>IIcc
 - Charm dijet invariant mass is discriminating distribution
- No significant excess
 - 95% CL observed (expected) upper limit on σ x BR of 2.7 (3.9) pb (μ of 110 (150))

1802.04329

LOOKING FORWARD: HIGGS TO MUONS

- Clean, rare (0.022 %) decay
- Analysis strategy:
 - 6 ggF (muon η , pT of dimuon system) + 2 VBF(BDT cut) = 8 SR's
- Analytical m_{µµ} models
 - Main backgrounds: Drell-Yan, top, VV
- Dimuon mass from SR's are likelihood fit input
- No significant excess observed; place upper limit on signal strength, µ
 - 95% CL observed (expected) upper limit 3.0 (3.1)
 - Combine with Run 1: 2.8 (2.9)

CLOSING THOUGHTS

Backup

 $t\bar{t}H$

VBF

SM HIGGS COUPLING TO FERMIONS

13 ATLAS Fermionic Higgs Production/ Decay S. Chan 2018.06.06

 At tree level, the Higgs boson interacts with fermions via a Yukawa coupling:

$$y_f = \frac{m_f}{v}$$

- Coupling to top quarks by far the largest
- Gives fundamental mass to fermions

CONTEXTUALIZING RESULTS: SIGNAL STRENGTHS

- Analysis results often reported in terms of signal strengths, $\mu = \frac{n_{ev,obs}}{2}$
 - $\mu=1$ corresponds to data matching (SM) prediction
 - Use to calculate p-values, etc.
- Any significant deviations from $\mu = 1$ would \bullet suggest Higgs coupling to fermions is more complicated (new physics)
- Lower uncertainties mean stronger tests \bullet
 - Amount of data (Stat)
 - Theoretical and experimental systematic uncertainties (Syst)

COMBINATION EXAMPLE: VH(BB) RUN1+RUN2

- Fit parameter correlations:
 - Correlate signal strength and some signal theory systematics
- Experimental systematics and modeling changed substantially
 - How to correlate? How to check?
 - Ultimately, only *b*-jet energy scale is important
- Combined result: best fit $\mu = 0.9 \pm 0.3$
 - Corresponds to observed (expected) 3.6σ (4.0σ) excess
 - First evidence of SM VH(bb)

VBF H(BB) FIT RESULTS

Leading NP categories: Higgs modeling, JES/JER, b-tagging (all $\sim \pm 0.2-0.3$)

FERMIONIC PRODUCTION: TTH

17 ATLAS Fermionic Higgs Production/ Decay S. Chan 2018.06.06

- Different analysis strategy based on Higgs decay
 - WW*, **bb** have combinatoric ambiguity, cannot do bump hunt
 - WW^{*}, ττ analyzed together in Multilepton (ML) analysis

• ZZ^{*}, γγ: first look for Higgs from decay products, then require additional b-jets for ttH, bump hunt analysis • WW*, ττ, bb: start by looking for ttbar final state, look for additional Higgs; MVA-based analyses

TTH EXAMPLE: MULTILEPTON (ML)

- Target WW* and $\tau\tau$ (and some ZZ*) decays by looking at final states with leptons
- Signal regions based on e/μ and τ_{had} multiplicity, lepton charge
 - e.g. 21 SS: 2 light leptons with same sign charge, (no hadronic τ 's)
- BDT distributions/yields as fit inputs
- Backgrounds: ttV, VV (MC); fake/non-prompt leptons, charge mis-ID (data-driven)
- Best fit $\mu = 1.6$ (+0.6,-0.5) largely agrees with \bullet SM; corresponds to a 4.1 σ (2.8 σ) observed (expected) excess

19

ATLAS

Higgs

Decay

S. Chan

Fermionic

Production/

2018.06.06

COMBINED TTH RESULTS

- lacksquare
 - lacksquare
- Observation of ttH

sis	Integrated	$t\bar{t}H$ cross	Observed	Expec
	luminosity [fb ⁻¹]	section [fb]	significance	significa
γγ	79.7	710_{-190}^{+210} (stat) $_{-90}^{+120}$ (sys)	4.1	3.7
multilepton	36.1	$790 \pm 150 \text{ (stat)} ^{+150}_{-140} \text{ (sys)}$	4.1	2.8
$b\bar{b}$	36.1	400^{+150}_{-140} (stat) ± 270 (sys)	1.4	1.6
$ZZ^* \to 4\ell$	79.7	<900 (68% CL)	0	1.2
ined (13 TeV)	≤ 79.7	$670 \pm 90 \text{ (stat)} ^{+110}_{-100} \text{ (sys)}$	5.8	4.9
ined (7, 8, 13 TeV)	$4.5, 20.3, \le 79.7$	_	6.3	5.1

13 TeV measured $\sigma(ttH) = 670 (\pm 90; stat) (\pm 110, -100; sys)$ fb agrees with SM Corresponds to observed (expected) 5.8 σ (4.9 σ) excess; w/Run1: 6.3 σ (5.1 σ) • Dominant systematics: ttbar modeling (9.9%); ttH modeling (6.0%); fake lepton (5.2%)

