Searches for extended scalar sectors in CMS

Georgia Karapostoli
University of California Riverside

30th Rencontres de Blois 2018,
Particle Physics and Cosmology
June 3 - 8, 2018
Additional Higgs-like scalars

- The observation of a H(125) scalar and measurement of its properties showed compatibility with the SM Higgs boson.
 - But many fundamental open questions still exist

Rich search program by adapting h(125) strategies for higher- and lower-mass scalars, in different production and decay modes.
Indirect constraints from H(125)

- Searches for deviations from the SM in H(125) measurements set constraints on 2HDM / MSSM scenarios
 - Couplings, CP, spin

- Translate 2HDM parameters to couplings and use 3D likelihood scans of parameterizations in \{\lambda_{du}, \lambda_{Vu}, \kappa_{uu}\} or \{\lambda_{lq}, \lambda_{Vq}, \kappa_{qq}\}

Ratio of couplings for up-vs down-type fermions

hMSSM: same Higgs structure as 2HDM Type-II
Overview of BSM Higgs searches (CMS)

- Direct searches for BSM phenomena

<table>
<thead>
<tr>
<th>X → hh</th>
<th>bbWW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bbττ</td>
</tr>
<tr>
<td></td>
<td>bbγγ</td>
</tr>
<tr>
<td></td>
<td>bbbb</td>
</tr>
<tr>
<td></td>
<td>γγWW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X → ZZ</th>
<th>llqq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>llll</td>
</tr>
<tr>
<td></td>
<td>llvv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X → WW</th>
<th>lvqq</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>llvv</td>
</tr>
<tr>
<td></td>
<td>qqqq</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X → Zγ</th>
<th>llγ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>qqγ</td>
</tr>
</tbody>
</table>

| X → γγ | |

| X: generic resonance including H |

<table>
<thead>
<tr>
<th>H/A → ττ</th>
<th>H/A → bb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>γγWW</td>
</tr>
<tr>
<td></td>
<td>bbττ</td>
</tr>
<tr>
<td></td>
<td>bbγγ</td>
</tr>
<tr>
<td></td>
<td>bbbb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H/A → ττ</th>
<th>H/A → bb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>γγWW</td>
</tr>
<tr>
<td></td>
<td>bbττ</td>
</tr>
<tr>
<td></td>
<td>bbγγ</td>
</tr>
<tr>
<td></td>
<td>bbbb</td>
</tr>
</tbody>
</table>

| H± | τV |
| | tb |
| WZ |

<table>
<thead>
<tr>
<th>A → Zh</th>
<th>(ll/νν)bb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>llqq</td>
</tr>
<tr>
<td></td>
<td>llll</td>
</tr>
<tr>
<td></td>
<td>llvv</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H → ZA</th>
<th>llbb</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>llqq</td>
</tr>
<tr>
<td></td>
<td>llll</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h → aa</th>
<th>4μ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2μ2τ</td>
</tr>
<tr>
<td></td>
<td>2b2τ</td>
</tr>
</tbody>
</table>

| Model-independent or specific to 2HDM/NMSSM |

Run1 grand summary: Interpretations into specific 2HDM model -> hMSSM

CMS Preliminary ≤ 5.1 fb$^{-1}$ (7 TeV) + ≤ 19.7 fb$^{-1}$ (8 TeV)

Model not strictly applicable

- h(125) (HIG-15-002)
- A/H → bb (arXiv:1506.08329)
- A/H/h → μμ (arXiv:1508.01437)
- A/H/h → ττ (HIG-14-023)
- H → hh (bqq) / A → Zh (llττ) (arXiv:1510.01181)
- H → hh (bγγ) (HIG-13-032)
- H → WW/ZZ (arXiv:1504.00936)

m_A [GeV]
H → VV (ZZ / WW)

- Most BSM models allow $H → VV$ decay
- Such searches usually look for
 - ggH and VBF: probes XVV coupling
 - Spin-zero scalar resonance: take into account interference with SM background and $H(125)$
- Several models considered since early Run 2
 - Heavy scalar with SM couplings
 - Electroweak singlet mixing with light scalar
 \[\Gamma' = \Gamma_{SM} \frac{C^2}{1 - B_{\text{new}}} , \quad C^2 + C'^2 = 1 \]

$H → ZZ → 2\ell 2\nu$

$H → ZZ → 4\ell$

- ggH, EWS, $B_{\text{new}} = 0$
- 2HDM, Type-II

CMS-PAS-HIG-15-004

CMS-PAS-HIG-16-001
H → ZZ → 4l/2l2q/2l2v

- Search for a high mass scalar resonance with model-independent approach:
 - Scanned Masses: $130 - 3000 \text{ GeV}$, Width: $0 - 30\% m_\chi$
 - $4l$: lowest BR, search in m_{4l}
 - $2l2q$: largest BR, search in m_{ZZ}, explore boosted and resolved $Z\rightarrow qq$
 - $2l2v$: large BR, signal extraction with M_T

\[
M_T^2 = \left(\sqrt{p_T(\ell\ell)^2 + M(\ell\ell)^2} + \sqrt{E_T^{\text{miss}} + M_Z^2} \right)^2 - (p_T(\ell\ell) + E_T^{\text{miss}})^2
\]

H → ZZ → 4l

H → ZZ → 2l2q

H → ZZ → 2l2v
Combined results $X(H)$ to ZZ to $4l$, $2l2q$ and $2l2v$ final states

No significant excess over SM expectations
- Total cross section limit with VBF / ggF ratio floated and $f(VBF) = 1$

Limits on $\sigma(pp \rightarrow X(H) \rightarrow ZZ)$ as a function of m_X and various widths ($\Gamma = 0, 10, 100$ GeV)

Model independent limits on σ_{prod} ($pp \rightarrow H \rightarrow ZZ$):
\(\mathcal{H} \rightarrow \gamma \gamma \)

- Searches for low mass (\(m_{\mathcal{H}} < 125 \text{ GeV} \)) resonances in \(\gamma \gamma \), already since Run1.

- Fit in the di-photon invariant mass [70, 110] GeV
 - Signal model + event categorizations as in standard \(\mathcal{H} \rightarrow \gamma \gamma \) analysis

- **Normalized to SM-like BSM Higgs boson expectation**

- **Unnormalized**

- \(13 \text{ TeV}: 2.9 \sigma \) local (1.47 \(\sigma \) global) at \(m_{\mathcal{H}} = 95.3 \text{ GeV} \)

- \(8 \text{ TeV} + 13 \text{ TeV} \) combined: 2.8 \(\sigma \) local (1.3 \(\sigma \) global) for same mass hypothesis
Neutral $A/H/h \rightarrow \tau\tau$

- Favored for exploring MSSM Higgs sector; sensitive at high $\tan\beta$ in MSSM-like models
 - Enhanced coupling to down-type fermions \rightarrow also motivates search for scalar in association with bottom

- 4x2 categories:
 - $e\mu, e\tau_h, \mu\tau_h, \tau_h\tau_h$ with ‘no b-tag’ and ‘b-tag’

- Signal extraction:

 $m_T^{\text{tot}} = \sqrt{m_T^2(l_1, E_T) + m_T^2(l_2, E_T) + m_T^2(h, l_2)}$

\[\mu\tau_h \text{ in ‘no b-tag’ and ‘b-tag’ categories} \]
A/H/h → ττ

Model independent limits on $\sigma_{\text{prod}} \times \text{BR}$:

MSSM interpretation:

$m_{h_{\text{mod+}}}^\text{max}$: m_h modified to $m_h=125$

hMSSM: $m_h=125$ by tuning radiative corrections.
Enhanced b-coupling; complementary to H→ττ for MSSM scenarios

H→bb dominant decay mode → challenging large QCD background → control with >= 3b-tag jets selection

Limits on tanβ (hMSSM)

![Graph showing limits on tanβ for hMSSM scenarios](image)

Constraints on tanβ (flipped scenario)

![Graph showing constraints on tanβ for flipped scenario](image)
Charged H^\pm

- $H^\pm \rightarrow \bar{c} b$ in lepton+jets channel
 - Di-jet mass reconstruction in lepton+jets
 - Set limits on BR($t \rightarrow H^+ b$)

- $H^\pm \rightarrow \tau^\pm \nu$, τ decay channel in fully hadronic final state

- Two scenarios:
 - Light H^\pm: $m_{H^\pm} < m_t - m_b$
 - Heavy H^\pm: $m_{H^\pm} > m_t - m_b$
Charged H^\pm cont.

- Charged H^\pm to WZ
 - Narrow-width resonance
 - Limits on $\sigma_{VBF} \times BR(H^\pm \to WZ)$ for m_{H^\pm}: [200,2000] GeV

- Doubly-charged Higgs (3 or 4 lepton final states)
 - Limits under various decay hypothesis

- Extend SM with scalar triplet ϕ

Charged Higgs to WZ

- Narrow-width resonance
- Limits on $\sigma_{VBF} \times BR(H^\pm \to WZ)$ for m_{H^\pm}: [200,2000] GeV

Doubly-charged Higgs (3 or 4 lepton final states)

- Limits under various decay hypothesis
Di-Higgs

- HH production
 - SM: $\sigma(13\text{TeV}) = 33.45$ fb
 - SM HH@HLC: not expected to be sensitive

- BSM can increase $\sigma(HH)$
 - $k_\lambda = 10 \rightarrow \sigma_{\text{BSM}} = 10 \times \sigma_{\text{SM}}$

BSM HH production

- Resonant HH: searches for a narrow width resonance (warped extra dimensions, low $\tan\beta$ MSSM, singlet models etc)

- Non-resonant HH enhanced; can be used to study Higgs self-coupling.
Di-Higgs

- **HH production**
 - SM: \(\sigma(13 \text{TeV}) = 33.45 \text{ fb} \)
 - SM HH@HLC: not expected to be sensitive

- **BSM can increase \(\sigma(\text{HH}) \)**
 - \(k_\lambda = 10 \rightarrow \sigma_{\text{BSM}} = 10 \times \sigma_{\text{SM}} \)

 BSM HH production

- **Resonant HH**: searches for a narrow width resonance (warped extra dimensions, low \(\tan\beta \) MSSM, singlet models etc)

- **Non-resonant HH** enhanced; can be used to study Higgs self-coupling.
HH → (bb) (bb)

- HH system decaying to 4b-jets
 - most sensitive channel to search for HH resonances for $m_X > 350$ GeV

- Boosted techniques; double-b tagging

- Signal region is defined as the elliptical region in (m_{H1}, m_{H2}) plane

- Spin0/2 hypotheses tested separately due to different signal efficiency

Upper limits on cross section for $\sigma (pp \rightarrow X \rightarrow H(bb)H(bb))$
Resonance mass [GeV]

300
400
500
600
700
800
900

$b b \gamma \gamma \rightarrow HH \rightarrow (X B) X \rightarrow (pp \sigma) (X B) X$

95% CL upper limits

Observed

Expected

1 std. deviation

Expected

2 std. deviation

Expected

$\lambda = 2$ TeV

$\Lambda_b = 3$ TeV

$\kappa = 0.5$

$\kappa = 1.0$

$\lambda = c_0 = c_2 = 0$

$\kappa_i = 1$

Resonant HH limits on WED models: spin0/spin2

Use BDT to separate signal from overwhelming background

Two signal hypotheses: non-resonant signal (SM+BSM) and resonant signals (all masses, both spins)

Limits on spin-0 and spin-2 signal hypotheses

Resonant HH $\rightarrow (bb) (\gamma\gamma)$

$HH \rightarrow bb\gamma\gamma$: leads the overall sensitivity at the low mass region

NonResonant: Upper limits for BSM models

Bulk radion

Rad. $m_X = 600$ GeV

$gg \rightarrow HH \times 10^5$

$VBF HH \times 10^5$

Grav. $m_X = 300$ GeV

35.9 fb$^{-1}$ (13 TeV)

CMS-PAS-HIG-17-008

$HH \rightarrow (bb) (\gamma\gamma)$

Classification MVA

Events/(0.04)

$\sqrt s = 13$ TeV

1 fb$^{-1}$
- Resonant and non-resonant hh \rightarrow bblvlv
- Train MVA on kin. variables (without mjj) to discriminate signal and bkg
 - Multi-signal, multi-categories -> use DeepNN with parameterized Machine Learning
 - Resonant: $mX = 13$ values [260, 900] GeV
 - Non resonant: 32 combinations of κ_λ, κ_t
 $$\kappa_\lambda = -20, -5, 0, 1, 2.4, 3.8, 5, 20$$
 $$\kappa_t = 0.5, 1, 1.75, 2.5$$
- Final discriminant: mjj vs MVA
BSM Higgs to aa

- Additional singlet + doublet $\rightarrow 7$ Higgs bosons ($h_{1,2,3}, a_{1,2}, H^\pm$) \rightarrow NMMSM

- Low mass resonances searched in exotic decays of $H(125)$: $h \rightarrow aa$

$h \rightarrow aa \rightarrow 2\mu 2\tau$

![Graph showing $h \rightarrow aa \rightarrow 2\mu 2\tau$ events](image)

$h \rightarrow aa \rightarrow 2b2\tau$

![Graph showing $h \rightarrow aa \rightarrow 2b2\tau$ events](image)

$h \rightarrow aa$ summary plot

(8 TeV + 13 TeV)

- 19.7 fb$^{-1}$ (8 TeV) + 35.9 fb$^{-1}$ (13 TeV)

95% CL on $\sigma(h \rightarrow aa)/\sigma_{\text{SM}}$

- 2HDM+S type III
 - $\tan\beta = 5.0$

m_a (GeV)

- Expected
- Observed
Summary and outlook

- Rich CMS program to search for new higgs-like scalars covering almost all possible final states
 - Topologies with heavy objects (b quarks, τ leptons) favored
- BSM Higgs searches as powerful tool to test the SM
- Advanced analysis techniques emerge since beginning of Run2:
 - Advanced Multivariate classifiers (DNN)
 - Jet substructure in boosted topologies
 - Sophisticated kinematic observables and selections
- Many more results awaited to exploit full LHC luminosity in 2017+2018!
Back ups
tt A/H \rightarrow tt tt

- Same-sign dileptons
HH → (bb)(ττ)

- **HH tag:**
 - invariant mass cut based on $m(ττ)$ and $m(bb)$ resolution
 - BDT discriminant against $t\bar{t}$ in $eτ_h$ and $μτ_h$
- Limit extraction: fitted HH mass (resonant) and MT2 (non-resonant)

Upper limits on cross section as a function of $k_λ/k_t$