Higgs boson pair production

Javier Mazzitelli

Rencontres de Blois, June 2018

Outline

• Introduction:

Motivation, main production and decay modes

Status and prospects for the LHC

QCD corrections for HH production:

NLO with full Mt dependence

NNLO including finite Mt effects

Resummation

BSM EFT dimension 6 operators

Conclusions

Multi-Higgs production Direct access to Higgs self-couplings

Self-couplings determined by the Higgs potential

$$V(H) = \frac{1}{2}M_H^2 H^2 + \lambda vH^3 + \frac{1}{4}\lambda'H^4$$

In the SM: $\lambda = \lambda' = M_H^2/(2v^2)$

Produce an off-shell Higgs boson that decays into: Trilinear coupling

$$H^* o HH$$

Quartic coupling

$$H^* \to HHH$$

Experimentally very challenging!

At the LHC:

Double Higgs production: challenging

Triple Higgs production: impossible

Production modes

- [1] Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira 12;
- [2] Frederix, Frixione, Hirschi, Maltoni, Mattelaer, Torrielli, Vryonidou, Zaro 14;
- [3] Ling, Zhang, Ma, Guo, Li, Li 14; [4] Li, Wang 16; [5] Li, Li, Wang 17;

Decay channels

Relevant channels: in general at least one $H \rightarrow bb$ to have large BR

bbbb: highest BR, high QCD and tt contamination bbww: high BG, large irreducible tt background

bbττ: relatively low background and low BR

bbyy: high purity, very low BR

LHC results

BSM scenarios can substantially enhance the HH cross section or produce a resonance

Both **resonant** and **non-resonant** searches have been performed at ATLAS and CMS

 $\sigma/\sigma_{\rm SM}$ 95% C.L. (exp)

	ATLAS	CMS
bbbb	<13 (21)	
bbWW		<79 (89)
bbtt		<30 (25)
bbyy	<22 (28)	<24 (19)
WWyy	<230 (160)	

Thomas Strebler, Blois 2018

 $O(10) \times SM$ sensitivity with $36fb^{-1}$ of data

...and prospects

- Assuming a SM rate, HH production should be observed at the HL-LHC
- Expected uncertainty on the signal yield: O(50%) using bbyy and bbττ
- Combination with other decay channels (specially 4b) will reduce this uncertainty

[ATL-PHYS-PUB-2014-019, ATL-PHYS-PUB-2015-046, CMS PAS FTR-15-002]

Higgs pair production should be observed at the HL-LHC... but we also want to measure λ

Assuming a SM-like scenario

- Determination of λ will require full HL-LHC integrated luminosity and the combination of the different decay channels
- Even then, uncertainties on λ will be 0(1)
- Complementary information from loop effects in single Higgs and EW precision observables

Precision determination: future colliders
 HE-LHC ~ 30%, FCC-100 ~ 5%

HH production via gluon fusion

Lot of recent progress for the QCD predictions

NLO full top mass [1]

Approximate NNLO [2]

Threshold resummation at NNLL $(M_t \rightarrow \infty)$ [5,6] qt-resummation at NLL [7]

NLO+PS [3,4]

 $M_t \rightarrow \infty$ NNLO including dim 6 operators [8]

[1] Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke 16; [2] Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, JM 18; [3] Heinrich, Jones, Kerner, Luisoni, Vryonidou 17; [4] Jones, Kuttimalai 17; [5] Shao, Li, Li, Wang 13; [6] de Florian, JM 15; [7] Ferrera, Pires 16; [8] de Florian, Fabre, JM 17;

NLO with full top mass dependence

• Calculation of QCD corrections is really difficult: exact NLO only became available in 2016

Borowka et al. arXiv:1604.06447

 Two-loop virtual corrections computed numerically using sector decomposition

- Grid available for fast numerical evaluation
- NLO matched to parton shower using MC@NLO and POWHEG frameworks

Jones, Kuttimalai arXiv:1711.03319

Heinrich et al. arXiv:1703.09252

- NLO corrections are very large (~66% for total cross section at 14TeV)
- Beyond that: heavy top quark mass limit (HTL, also called HEFT)

• Typically, corrections computed in the HEFT and normalized by exact LO differentially in M_{hh}

HTL vs full theory

- Heavy Mt limit → Worse than for single Higgs (larger invariant mass)
 Dominant contribution to total XS is above 2Mt threshold
- Born improved overestimates the NLO total XS by a 15% (~42% the pure NLO piece)
- Poor description of the tail of some distributions

We can do better, for instance:

Maltoni, Vryonidou and Zaro, arXiv:1408.6542

- Overestimates NLO total XS by only 4% (~11% the NLO piece)
- Better description of distributions

HH at NNLO with M_t effects

Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, JM [arXiv:1803.02463]

- Goal: combine full NLO with heavy-M_t NNLO, and improve NNLO piece to account for finite-M_t effects
- **Double real** corrections can be computed in the **full theory** (one-loop amplitudes)
- Idea: construct an approximation in which they are treated in an exact way

We perform a subprocess-wise reweighting: for each n-loop squared amplitude

$$\mathcal{A}_{\mathrm{HEFT}}^{(n)}(ij \to HH + X)$$

we apply the reweighting

$$\mathcal{R}(ij \to HH + X) = \frac{\mathcal{A}_{\text{Full}}^{\text{Born}}(ij \to HH + X)}{\mathcal{A}_{\text{HEFT}}^{(0)}(ij \to HH + X)}$$

- Amplitudes that are tree-level in the HTL are treated exactly
- At NLO this procedure agrees with the FTapprox
- Fully differential results, based on public code MATRIX [Kallweit, Grazzini, Wiesemann 17]
- Most advanced parton level prediction for this process

HH at NNLO with M_t effects

Grazzini, Heinrich, Jones, Kallweit, Kerner, Lindert, JM [arXiv:1803.02463]

- Goal: combine full NLO with heavy-M_t NNLO, and improve NNLO piece to account for finite-M_t effects
- **Double real** corrections can be computed in the **full theory** (one-loop amplitudes)
- Idea: construct an approximation in which they are treated in an exact way

- Amplitudes that are tree-level in the HTL are treated exactly
- At NLO this procedure agrees with the FTapprox
- Fully differential results, based on public code MATRIX [Kallweit, Grazzini, Wiesemann 17]
- Most advanced parton level prediction for this process

NNLO total cross sections

\sqrt{s}	13 TeV	$14 \mathrm{TeV}$	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
NNLO _{FTapprox} [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	$\pm 4.6\%$
$NNLO_{FTapprox}/NLO$	1.118	1.116	1.096	1.067

- Increase w.r.t. previous order of about 12% for LHC, size decreasing with the energy
- Smaller cross sections compared to previous approximations (larger difference for higher energies)
- Strong reduction of the scale uncertainties
- Size of missing Mt effects estimated at the few percent level
 Based on performance at previous order and on comparison between different approximations
- Results computed in the on-shell scheme, no estimation of Mt renormalization scheme uncertainties

NNLO differential distributions

- FTapprox presents larger corrections at threshold, minimum corrections at $M_{hh} \sim 400 GeV$, slow increase towards the tail
- Scale uncertainties are substantially reduced
- Overlap with the NLO band

- Born-improved HTL (blue) has wrong scaling in the tail. No information about lowest order for $p_{\text{T,hh}}$
- Distribution trivial at LO: NNLO is effectively NLO Large corrections and sizeable scale uncertainties

Resummation

• q_T-resummation computed at NLL with full Mt dependence

Ferrera, Pires 16

- Allows to perform predictions for low pt,hh
- Satisfactory agreement with NLO+PS Jones, Kuttimalai 17

Analytic resummation uncertainties not included in the plot

• Threshold resummation computed at NNLL in the HTL

Shao, Li, Li, Wang 13; de Florian, JM 15

• About 7% effect at 14TeV and $\mu = M_{hh}$, but smaller (\sim 0.7%) for $\mu = M_{hh}/2$

10/14

Sensitivity to λ_{hhh}

- λ variation computed at NLO and HTL NNLO
- Minimum around $\lambda=2$
- Larger XS for negative λ due to absence of destructive interference

- λ=1 (SM) leads to big cancellation at threshold
- M_{hh} distribution can increase the sensitivity to λ

BSM EFT

Just varying λ is not enough! In general we have to consider all relevant EFT operators

Several studies using EFT approach

HL-LHC sensitivity to λ [1,2,3,4]

- bbyy most sensitive channel for λ determination
- [-0.1, 6.4] 95% C.L. for λ at HL-LHC [4]

Cluster analysis [5,6]

- Shape classification of the parameter space
- 12 clusters with points that lead to similar phenomenology + 12 benchmark points
- Simplification of the analysis

Benchmark	κ_{λ}	κ_t	c_2	c_g	c_{2g}
1	7.5	1.0	-1.0	0.0	0.0
2	1.0	1.0	0.5	-0.8	0.6
3	1.0	1.0	-1.5	0.0	-0.8
4	-3.5	1.5	-3.0	0.0	0.0
5	1.0	1.0	0.0	0.8	-1.0
6	2.4	1.0	0.0	0.2	-0.2
7	5.0	1.0	0.0	0.2	-0.2
8	15.0	1.0	0.0	-1.0	1.0
9	1.0	1.0	1.0	-0.6	0.6
10	10.0	1.5	-1.0	0.0	0.0
11	2.4	1.0	0.0	1.0	-1.0
12	15.0	1.0	1.0	0.0	0.0
SM	1.0	1.0	0.0	0.0	0.0

^[1] Contino, Ghezzi, Moretti, Panico, Piccinini, Wulzer 12; [2] Goertz, Papaefstathiou, Yang, Zurita 14; [3] Azatov, Contino, Panico, Son 15

^[4] Kim, Sakaki, Son 18; [5] Carvalho, Dall'Osso, Dorigo, Goertz, Gottardo, Tosi 15;

^[6] Carvalho, Dall'Osso, Manzano, Dorigo, Goertz, Gouzevich, Tosi 16

BSM EFT - QCD corrections

• NLO [1] and NNLO [2] QCD corrections computed in the HTL

 Large corrections, in general mild dependence on the couplings

$$c_{3} = 1 + 10 \, \xi,$$
 $c_{t} = 1 + 0.35 \, \xi,$
 $c_{tt} = 1.5 \, \xi,$
 $c_{g} = 0.15 \, \xi,$
 $c_{gg} = 0.15 \, \xi.$

 Larger dependence when varying various couplings simultaneously

• NLO analysis with full Mt dependence in preparation [3]

Max NNLO K-fac variation w.r.t. SM

Conclusions

- HH production is an important measurement to probe the Higgs self-coupling
- Current limit: $0(10) \times SM$ cross section
- Should be observed in the HL-LHC

Lot of recent progress in the **theoretical predictions**:

- NLO with full Mt dependence, very large corrections
- NLO + PS available
- Beyond that: **NNLO**FTapprox, which includes finite Mt effects at NNLO Current HXSWG recommendation for the total XS
- Large reduction of theoretical uncertainties w.r.t. previous order and to other approximations
- QCD corrections for BSM EFT studied in the M_t→∞ limit
- Outlook: NNLO_{FTapprox} for non-SM self-couplings, inclusion of Higgs decays, estimation of Mt renormalization scheme uncertainties, BSM EFT at NLO with full Mt dependence

Thanks!

\sqrt{s}	13 TeV	14 TeV	27 TeV	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$

- At NLO the FTapprox overestimates full NLO by 4% —— 11% for the pure NLO contribution
- Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO
- Multiply by a factor of 2 to be more conservative

(14TeV)

\sqrt{s}	13 TeV	3 TeV 14 TeV 27 Te		100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
NNLO _{FTapprox} [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9 {}^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.3\%$	$\pm 2.4\%$	$\pm 2.7\%$	±3.1%

- At NLO the FTapprox overestimates full NLO by 4% —— 11% for the pure NLO contribution
- Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO
- Multiply by a factor of 2 to be more conservative

(14TeV)

\sqrt{s}	13 TeV	14 TeV 27 TeV		100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1{}^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9 {}^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.3\%$	$\pm 2.4\%$	$\pm 2.7\%$	$\pm 3.1\%$
M_t unc. NNLO _{B-proj}	±14%	$\pm 15\%$	$\pm 20\%$	$\pm 36\%$

- At NLO the FTapprox overestimates full NLO by $4\% \longrightarrow 11\%$ for the pure NLO contribution
- Assuming a ±11% uncertainty for the pure NNLO piece ±1.2% uncertainty at NNLO
- Multiply by a factor of 2 to be more conservative

(14TeV)

We can repeat the procedure for the Born-projected approximation

Compatible results even without the factor of 2

\sqrt{s}	13 TeV	$ m V = 14~TeV = 27~^{\prime\prime}$		100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
NNLO _{FTapprox} [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	±2.3%	$\pm 2.4\%$	$\pm 2.7\%$	±3.1%
M_t unc. NNLO _{B-proj}	$\pm 14\%$	$\pm 15\%$	$\pm 20\%$	±36%

- But the difference between FTapprox and NLO-i increases with the collider energy faster than this uncertainty estimate
- To be more conservative, take half the difference between FTapprox and NLO-i

\sqrt{s}	13 TeV	14 TeV 27 TeV		100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	$32.88^{+13.5\%}_{-12.5\%}$	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25{}^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220^{+11.9\%}_{-10.6\%}$
$NNLO_{NLO-i}$ [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
$NNLO_{B-proj}$ [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$1406^{+0.5\%}_{-2.8\%}$
$NNLO_{FTapprox}$ [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69{}^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc. NNLO _{FTapprox}	$\pm 2.3\%$	$\pm 2.4\%$	±2.7%	±3.1%
M_t unc. NNLO _{B-proj}	±14%	$\pm 15\%$	±20%	±36%
M_t unc. NNLO _{FTapprox}	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	$\pm 4.6\%$

- But the difference between FTapprox and NLO-i increases with the collider energy faster than this uncertainty estimate
- To be more conservative, take half the difference between FTapprox and NLO-i

Small difference for LHC, more conservative for larger energies

NLO-improved approximation - NNLO_{NLO-i}

Done originally in Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk and Zirke, arXiv:1608.04798 [hep-ph]

Simplest approach: for **each bin** of each histogram we do

$$NNLO_{NLO-i} = NLO \times \left(\frac{NNLO}{NLO}\right)_{HEFT}$$

- Observable level reweighting, technically simple
- Finite Mt effects in the NNLO piece enter via the full NLO
- Has to be repeated for each observable and binning (bin size dependent!)
- We compute the total cross section based on the M_{hh} distribution

Born-projected approximation - NNLO_{B-proj}

Reweight each NNLO event by the ratio of the full and HEFT Born squared amplitudes

Different multiplicities (double real and real-virtual corrections)

Projection to Born kinematics needed

We make use of the qT-recoil procedure:

Catani, de Florian, Ferrera and Grazzini, arXiv:1507.06937 [hep-ph]

- Momenta of the Higgs bosons remain unchanged
- The new initial state partons momenta absorb the qT due to the additional radiation
- Initial state momenta remain massless, and their transverse component goes to zero when qT goes to zero (and then qT-cancellation is not spoiled)

Finite Mt effects entering only via the Born amplitude: no information about real radiation

λ variation

Sensitivity to Higgs self-coupling for the different HH production mechanisms

Larger sensitivity in the VBF production mode, but much smaller cross section

NNLO_{FTapprox} total cross sections

Current recommendations from HXSWG

\sqrt{s}	7 TeV	8 TeV	13 TeV	$14 \mathrm{TeV}$	27 TeV	100 TeV
NNLO _{FTapprox} [fb]	$6.572^{+3.0\%}_{-6.5\%}$	$9.441^{+2.8\%}_{-6.1\%}$	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224^{+0.9\%}_{-3.2\%}$
M_t unc.	$\pm 2.2\%$	$\pm 2.3\%$	$\pm 2.6\%$	$\pm 2.7\%$	$\pm 3.4\%$	$\pm 4.6\%$
PDF unc.	$\pm 3.5\%$	$\pm 3.1\%$	$\pm 2.1\%$	$\pm 2.1\%$	$\pm 1.7\%$	$\pm 1.7\%$
$\alpha_{ m S}$ unc.	$\pm 2.6\%$	$\pm 2.4\%$	$\pm 2.1\%$	$\pm 2.1\%$	±1.8%	±1.7%
$PDF + \alpha_S$ unc.	±4.3%	±3.9%	±3.0%	±3.0%	$\pm 2.5\%$	±2.4%

Table 1: Inclusive cross sections for Higgs boson pair production for different centre-of-mass energies in the NNLO_{FTapprox}, for $m_H = 125$ GeV. Scale uncertainties are reported as superscript/subscript. The estimated top quark mass uncertainty of the NNLO_{FTapprox} predictions is also presented, together with PDF and α_S uncertainties. The calculation is performed in the on-shell top quark mass scheme, and studies of the uncertainty related to the scheme choice are in progress.

\sqrt{s}	7 TeV	8 TeV	13 TeV	14 TeV	27 TeV	100 TeV
$m_H = 124.59 \text{ GeV [fb]}$	6.609	9.493	31.21	36.88	140.6	1229
$m_H = 125.09 \text{ GeV [fb]}$	6.564	9.430	31.02	36.65	139.8	1223
$m_H = 125.59 \text{ GeV [fb]}$	6.519	9.366	30.82	36.43	139.0	1217

Table 2: Inclusive cross sections for Higgs boson pair production for different centre-of-mass energies at NNLO_{FTapprox}, for different values of m_H . Only the central values are reported, the relative uncertainties can be taken from the corresponding $m_H = 125$ GeV results in Table 1.

Numerical stability

- Extrapolation to $r_{cut} \rightarrow 0$ via linear least χ^2 fit (vs quadratic in default MATRIX)
- Upper bound of the interval varied to get the best fit and uncertainty estimation