

Recent probes of perturbative QCD calculations with jets at ATLAS and CMS

Rencontres de Blois, 2018

June 6

Amal Vaidya

University College London

Introduction

Large momentum transfers seen at the LHC allow us to probe pQCD

 Jet final states can be sensitive to parton structure (PDFs), strong coupling, matrix elements

$$\sigma_{P_1,P_2\to X} = \sum_{ij} \int dx_1 dx_2 f_{i,P_1}(x_i,\mu_f) f_{j,P_2}(x_j,\mu_f)$$
$$\times \sigma_{ij\to X} \left(x_1 p_1, x_2 p_2, \alpha(\mu_r^2), \frac{Q^2}{\mu_f^2} \right)$$

Will discuss four recent ATLAS and CMS results, looking at jet final states sesntive to the above

- dijet and inclusive jet: probe NNLO calculation and scale choices
- triple differential dijet: constrain PDFs
- azimuthal correlations: compare MC generators
- ightharpoonup azimuthal correlation ratio: $\alpha_s(Q)$ extraction at high Q

Analysis overview

ATLAS: Dijet and inclusive jet

arXiv:1711.02692

measure inclusive jet and dijet double-differential cross sections:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} \boldsymbol{p}_{\mathrm{T}} \mathrm{d} \boldsymbol{y}} = \frac{\boldsymbol{N}_{\mathrm{jets}}}{\mathcal{L} \Delta \boldsymbol{p}_{\mathrm{T}} \Delta \boldsymbol{y}}$$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_\mathrm{T}\mathrm{d}y} = \frac{N_\mathrm{jets}}{\mathcal{L}\Delta p_\mathrm{T}\Delta y} \qquad \quad \frac{\mathrm{d}^2\sigma}{\mathrm{d}m_\mathrm{jj}\mathrm{d}y^*} = \frac{N_\mathrm{dijet}}{\mathcal{L}\Delta m_\mathrm{jj}\Delta y^*}$$

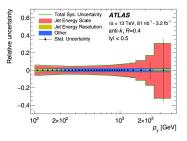
- Use 3.2 fb⁻¹ of \sqrt{s} = 13 TeV data
- Compare to NLO and state of the art NNLO calculations
- Also probe how the choice of scale effects on the inclusive jet calculations

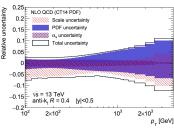
Event selection and triggering

- Use a suite of single jet triggers to select inclusive jet events
- \triangleright dijet selection: use trigger pairing with σ based on pairings

$$y^* = |y_1 - y_2|/2$$

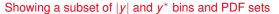
Theoretical predictions

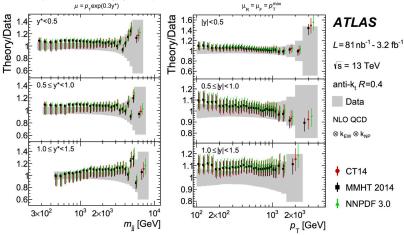

Data is corrected for detector effects using the iterative dynamically stabilised (IDS) unfolding method


NLO calculated using NLOJET++

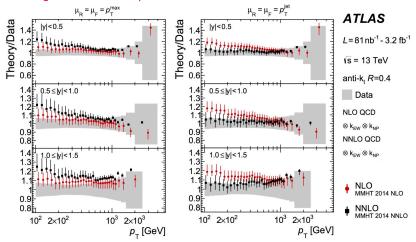
Calculated using 6 different NLO PDF sets provided by LHCPDF6

NNLO calculation provided by J. Currie, E. Glover and J. Pires


- Non perturbative correction factors are derived bin by bin, comparing a LO MC with and without showering and hadronisation
- Electroweak corrections are taken from S. Dittmaier, A. Huss and C. Speckner



NLO results


Fair agreement is seen in most of the phase space, with some tensions in the 1.5-2.5 y^* range for the dijet selection.

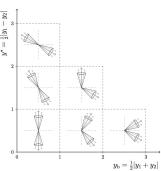
Tension between data and theory is observed in the inclusive measurement when considering the full phase-space

NNLO results

Showing NNLO/data comparison with different scale choices

Effects of two different scale choices considered
Either NLO or NNLO has better agreement based on choice

Analysis overview


CMS: Dijet triple-differential

arXiv:1705.02628

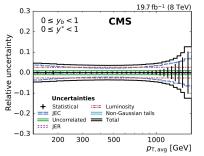
Measure triple differential cross section using 19.7 fb⁻¹ of 8 TeV data

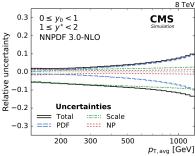
$$\frac{\mathrm{d}^3\sigma}{\mathrm{d}\rho_{\mathrm{T,avg}}\mathrm{d}y^*\mathrm{d}y_\mathrm{b}} = \frac{1}{\epsilon\mathcal{L}^{\mathrm{eff}}}\frac{N}{\Delta\rho_{\mathrm{T,avg}}\Delta y^*\Delta y_\mathrm{b}}$$

- Comparisons made to NLO predictions
- Binning in y_b results in selections with different partonic subprocesses
- Data used to constrain PDFs and extract a value for α_s

Use a suite of single jet triggers and select the leading two central (|y| < 3.0) jets from events with at least two jets

Unfolding and systematics

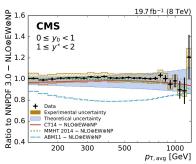



Distributions corrected to particle level using iterative D'Agostini algorithm

- ▶ Response matrix uses psuedo-events weighted to NLO prediction, smeared using the jet $p_{\rm T}$
- Jet energy correction is the largest experimental uncertainty

NLO predictions calculated using NLOJET++

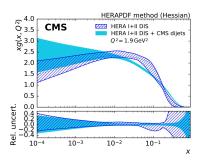
- non perturbative corrections are applied by comparing LO MC with and without hadronisation and MPI
- Electroweak correction also applied, from arXiv: 1210.0438



Results

good agreement between data and NLO, expect in regions of high $p_{T,avg}$ and y_b which are sensitive to high-x PDF values

ABM11 PDFs underestimate the data for $y_b < 2.0$


Constraints on PDFs are obtained by a fit including the results and HERA DIS data.

- Fits are performed using the XFitter framework, at NLO
- comparisons are made on the quality of the fit

Data set(s)	$n_{ m dof}$	χ^2	$\chi^2/n_{\rm dof}$	χ^2	$\chi^2/n_{\rm dof}$
HERA data	1040	1211.00	1.16	_	_
HERA & CMS data	1162	_	_	1372.52	1.18

- Uncertainty in the gluon pdf significantly reduced in the high x region, some reduction also seen in valence and sea quarks
- Also noticeable change in the shape

By repeating the fit while leaving $\alpha_s(M_Z)$ as a free parameter, one obtains

$$\alpha_s(M_Z) = 0.1199 \pm 0.0015(\exp)^{+0.0032}_{-0.0020}(\text{mod})$$

which is in agreement with previous CMS and ATLAS measurements and the world average.

Analysis overview

CMS: Azimuthal correlations

arXiv:1712.05471

Consider leading two jets in 2,3,4 inclusive jet events and measure

$$\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Delta\phi_{12}}$$
 and $\frac{1}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\Delta\phi_{2j}^{\min}}$

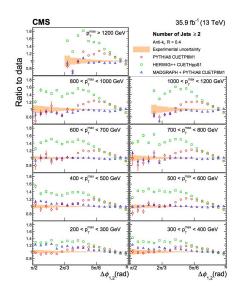
- lacktriangledown $\Delta\phi_{2j}^{
 m min}$ is sensitive to lower $m{
 ho}_{
 m T}$ jets and adds additional information
- Compare to various LO and NLO predictions

Used 35.9 fb⁻¹ of 13 TeV data

- ▶ Use a selection of five single jet triggers to select events with at least one jet with $\rho_{\rm T} >$ 200 GeV
- Study different MC generators at different orders
- Evaluate performance of parton showers and matching

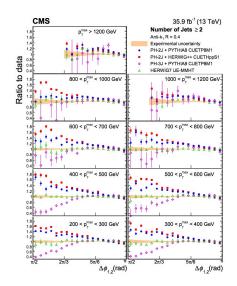
Theoretical predictions

Use a matrix inversion algorithm to correct for detector effects
JES, JER and unfolding systematics are the largest experimental uncerts


There were a number of event generators used for comparison

Matrix element generator	Simulated diagrams	PDF set	Tune
рутніа 8.219 [9]	2→2 (LO)	NNPDF2.3LO [14, 15]	CUETP8M1 [13]
HERWIG++ 2.7.1 [10]	2→2 (LO)	CTEQ6L1 [16]	CUETHppS1 [13]
MadGraph5_amc@nlo 2.3.3 [17, 18] + pythia 8.219 [9]	$2\rightarrow$ 2, $2\rightarrow$ 3, $2\rightarrow$ 4 (LO)	NNPDF2.3LO [14, 15]	CUETP8M1 [13]
POWHEG V2.Sep2016 [20–22] + PYTHIA 8.219 [9]	2→2 (NLO), 2→3 (LO)	NNPDF3.0NLO [28]	CUETP8M1 [13]
POWHEG V2.Sep2016 [20–22] + PYTHIA 8.219 [9]	2→3 (NLO), 2→4 (LO)	NNPDF3.0NLO [28]	CUETP8M1 [13]
POWHEG V2.Sep2016 [20–22] + HERWIG++ 2.7.1 [10]	2→2 (NLO), 2→3 (LO)	NNPDF3.0NLO [28]	CUETHppS1 [13]
HERWIG 7.0.4 [23]	$2{\rightarrow}2~(NLO), 2{\rightarrow}3~(LO)$	MMHT2014 [29]	H7-UE-MMHT [23]

Largest theoretical uncertainty comes from parton showering


- Evaluated using Pythia8 by scaling renormalisation scale for ISR and FSR independently up and down
- For $\Delta\phi_{12}$ range from < 5% at π upto 40-60% at ($\approx\pi/2$) for greater $p_{\rm T}^{\rm max}$ in the 2-jet case. Don't exceed 20% for the 3,4-jet case

LO results

- MadGraph+Pythia8 provides the best description of the data
- Pythia8 performs better than Herwig++

NLO results

- HERWIG7 provides the best description of the data
- PowHeg 2j and 3j have large deviations from the measured data
- Herwig++ and Pythia8 use different α_s values for (I)FSR and have a different upper scale for PS emissions
- HERWIG 7 uses MC@NLO method of combining PS with particle level, which here seems to perform better than the POWHEG method

Analysis overview

ATLAS: Azimuthal decorrelations

arXiv:1805.04691

Measure the following ratio:

$$\textit{R}_{\Delta\phi}(\textit{H}_{\mathrm{T}},\textit{y}^*,\Delta\phi_{\mathrm{max}}) = \frac{\frac{\mathrm{d}^2\sigma_{\mathrm{dijet}}(\Delta\phi_{\mathrm{dijet}}<\Delta\phi_{\mathrm{max}})}{\mathrm{d}\textit{H}_{\mathrm{T}}\textit{d}\textit{y}^*}}{\frac{\mathrm{d}^2\sigma_{\mathrm{dijet}}(\mathrm{inclusive})}{\mathrm{d}\textit{H}_{\mathrm{T}}\textit{d}\textit{y}^*}}$$

 Ratio has smaller dependance on PDFs in α_s extraction and running studies

Additional cuts applied on y_{max}^* , $y_{\text{max}}^{\text{b}}$ and $p_{\text{T1}}/H_{\text{T}}$

- ensure that jets are within |y| < 2.5 and are thus well measured
- ▶ Reduces contributions from events with 4 or more jets, less sensitive to higher orders in α_s

Use a set of single and multi jet triggers in each H_T bin

$$y_{\text{max}}^* < 2.0, \ y_{\text{max}}^{\text{b}} < 0.5, \ p_{\text{T1}}/H_{\text{T}} > 1/3$$

Theoretical predictions

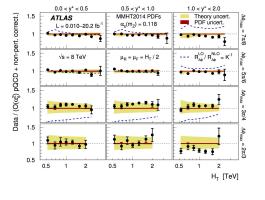
pQCD calculations at fixed order in α_s with NP corrections

- Calculations carried out using NLOJET++
- predictions for $R_{\Delta\phi}$ are calculated at NLO, expect for $\Delta\phi_{\rm max}=2\pi/3$ (4 jet quantity)
- evolution of α_s computed at a NLL approximation

A set of various PDF sets were used

- ▶ Sets obtained for a series of discrete α_s values with $\Delta \alpha_s = 0.001$
- continuous dependance obtained by interpolation
- ► MMHT2014 used as nominal: largest range of values (0.108 0.128)

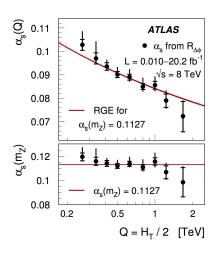
uncertainties


- Uncertainties on pQCD by varying μ_f and μ_r
- MMHT2014 PDF uncertainties used, an envelope of the results obtained with other sets is also used
- ▶ NP corrections obtained from M. Wobisch, et al.

Results

All predictions (including LO) are consistent with the data

A subset of the datapoints are used for the α_s extraction


- points where calculation is most reliable (scale dependance)
- data points are combined if their phase space is orthogonal
- largest cancellation of PDF uncertainty
- smallest stat uncertainty

The datapoints from the region 0 $< y^* <$ 0.5 and 0.5 $< y^* <$ 1 for $\Delta\phi_{\rm max} = 7\pi/8$ are used Scale uncertainties are the largest sytematic

 α_s extracted as a function of $Q = H_T/2$

- the results are extracted from a Minuit χ² fit
- Nine α_s(Q) values are extracted 262 < Q ≤ 1675 GeV</p>
- Separate χ² fits are made for scale variations and also for CT14, NNPDF2.3, ABMP16, HERAPDF 2.0
- Biggest difference of +0.0029 observed with HERAPDF 2.0
- A series of systematic studied also investigated the effect of other analyses choices (suggest result is rather independent of the analysis choice)

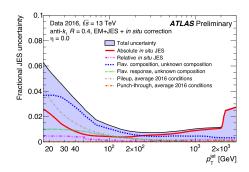
Final value: $\alpha_s(m_{\rm Z})=0.1127^{+0.0063}_{-0.0027}$, consistent with global value

Summary

Large scope for doing precision measurements at the LHC

- Tensions seen in some region of phase space
- New complimentary measurements of α_s
- ▶ Help reduce PDF uncertainty in certain regions of phase space

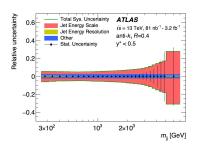
BACKUP

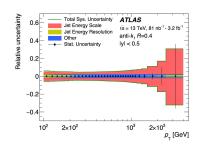

ATLAS: Jet calibration and systematics

Multi-step Jet energy calibration

- 1. Pile up correction: Based on jet area, μ and N_{PV}
- 2. Jet energy Scale: Energy corrected for mean detector response in η , p_T
- 3. Global sequential: Based on topology and associated tracks
- In situ calibration: measurements used to correct remaining data/MC difference

Energy scale uncertainties The systematic uncertainties of the above steps are combined as independent components




ATLAS multijet: Unfolding and uncertainties

Data is corrected for detector effects using the iterative dynamically stabilised (IDS) unfolding method

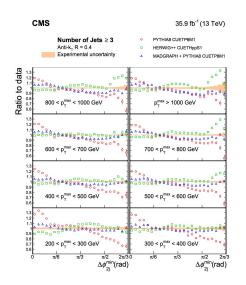
- statistical uncertainties are propagated through the unfolding using an ensemble of pseudo-experiments (bootstrap method)
- the various JES uncertainties are propagated through the unfolding using ±1 sigma variations and pseudo data (bootstrap method) to evaluate statistical significance

ATLAS multijet: P values

 ${\it P}$ values from the comparison between data and the NLO predictions for inclusive jet selection

		$P_{ m obs}$				
Rapidity ran	ges	CT1	4 MMHT 2014	MMHT 2014 NNPDF 3.0		ABMP16
$p_{\mathrm{T}}^{\mathrm{max}}$						
y < 0.5		67%	65%	62%	31%	50%
$0.5 \le y < 1$	1.0	5.8%	6.3%	6.0%	3.0%	2.0%
$1.0 \le y < 1$	1.5	65%	61%	67%	50%	55%
$1.5 \le y < 2$	2.0	0.79	6 0.8%	0.8%	0.1%	0.4%
$2.0 \le y < 2$	2.5	2.3%	6 2.3%	2.8%	0.7%	1.5%
$2.5 \le y < 3$	y < 3.0 629		6 71%	69%	25%	55%
$p_{\mathrm{T}}^{\mathrm{jet}}$						
y < 0.5		69%	67%	66%	30%	46%
$0.5 \le y < 1$	$0.5 \le y < 1.0$ 7.4%		6 8.9%	8.6%	3.4%	2.0%
$1.0 \le y < 1$	$1.0 \le y < 1.5$ 69%		62%	68%	45%	54%
$1.5 \le y < 2$	$1.5 \le y < 2.0$ 1.3%		6 1.6%	1.4%	0.1%	0.5%
$2.0 \le y < 2.5$ 8.7%		6.6%	7.4%	1.0%	3.6%	
$2.5 \le y < 3.0$ 65%		72%	72%	28%	59%	
χ^2/dof	CT	Γ14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16
all $ y $ bins	01	1.1.1	WINIII 2014	11111 DF 5.0	HERMI DE 2.0	ADMI 10
$p_{\mathrm{T}}^{\mathrm{max}}$	419/177		431/177	404/177	432/177	475/177
$p_{\mathrm{T}}^{\mathrm{jet}}$	t 399/177		405/177	384/177	428/177	455/177

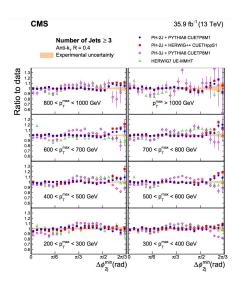
ATLAS multijet: P values



 ${\it P}$ values from the comparison between data and the NLO predictions for the dijet selection

	$P_{ m obs}$					
y^* ranges	CT14	MMHT 2014	NNPDF 3.0	HERAPDF 2.0	ABMP16	
$y^* < 0.5$	79%	59%	50%	71%	71%	
$0.5 \le y^* < 1.0$	27%	23%	19%	32%	31%	
$1.0 \le y^* < 1.5$	66%	55%	48%	66%	69%	
$1.5 \le y^* < 2.0$	26%	26%	28%	9.9%	25%	
$2.0 \le y^* < 2.5$	43%	35%	31%	4.2%	21%	
$2.5 \le y^* < 3.0$	45%	46%	40%	25%	38%	
all y^* bins	8.1%	5.5%	9.8%	0.1%	4.4%	

CMS: Results, $\Delta \phi_{2j}$



LO results

- Pythia8 has a larger deviation from the data than Herwig++
- MADGRAPH has reasonable agreement, but gets worse in the 4-jet case

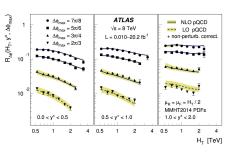
CMS: Results, $\Delta \phi_{2j}$

NLO results

- PowHeg 2j with either Pythia8 or Herwig++ provides the best agreement with data
- ▶ PowHeg 3j results are stat limited at high p_T^{max} but have a worse agreement

ATLAS $\Delta \phi$: Unfolding and systematics

Consider anti- k_t R=0.6 jets within detector acceptance ($|\eta|$ < 4.9)


- multijet jet energy calibration is applied (pile up, area, JES, residual)
- Jet quality cuts applied to remove remaining pile up jets

The $R_{\Delta\phi}$ distributions are unfolded bin-by-bin to correct for detector effects

- ▶ Bin width is set be larger than $\Delta \phi$ resolution
- Cross checked using iterative unfolding procedure
- Corrections are small, uncertainties typically below 1%

62 sources of systematic uncertainty considered

- Mainly from the jet energy calibration
- Also includes angular and energy resolution
- typically between 1% and 1.5%

CMS $\Delta \phi$: Unfolding

Use a matrix inversion algorithm to correct for detector effects

- ▶ Reponse matrix created by the convolution of the generator level observables with the $\Delta\phi$ resolution
- Cross checked using samples will full detector sim
- ▶ Bin width set to be between 5 to 10 times $\Delta \phi$ resolution

Consider three main sources of systematic uncertainty

JES: 3% (at $\pi/2$) to 0.1% (at π) $\Delta\phi_{12}$ uncertainty and a 0.1% to 2% $\Delta\phi_{2j}^{\min}$

JER: 1% (at $\pi/2$) to 0.1% (at π) $\Delta\phi_{12}$ uncertainty and < 0.5% $\Delta\phi_{2j}^{\min}$ uncertainty

unfolding Tested by changing choice of generator and varying the $\Delta\phi$ resolution. Total uncertainty 0.2%

ATLAS: Softdrop mass

arXiv:1711.08341

New grooming techniques allow for more precise calculations

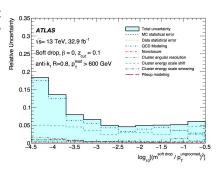
$$\mathrm{measure}~\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\log_{10}\rho^2},~\mathrm{where}~\rho=m^{\mathrm{softdrop}}/p_{\mathrm{T}}^{\mathrm{ungroomed}}$$

- Jet substructure techniques have been widely used for tagging
- General procedures now exist for understanding IR an collinear safe observables at LL accuracy
- softdrop: removes NGLs, allow predictions beyond LL
- softdrop mass has been calculated at both NLO with NLL and LO NNLL accuracy

Measure for three different softdrop parameters (β = 0,1,2) The ungroomed jet $p_{\rm T}$ is used since, in some cases (β = 0), its collinear unsafe

softdrop and systematics

softdrop grooming: start with a Cambridge/Aachen (angular) jet


• un-do the clustering, at each step check the following (soft drop) condition for the protojets, j_i and j_2

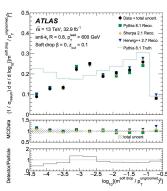
$$\frac{\min(p_{\mathrm{T}i}, p_{\mathrm{T}j})}{p_{\mathrm{T}i} + p_{\mathrm{T}j}} > z_{\mathrm{cut}} \left(\frac{\Delta R_{12}}{R}\right)^{\beta}$$

if the condition passes passes, terminate the agorithm, else discard discard the branch with the lowest p_T and iterate

Use a single jet trigger and select leading two Anti-kt jets with $|\eta| < 1.5$

- Use iterative bayesian method to correct for detector effects
- experimental uncertainties, apply variations to calo-cell clusters
- QCD fragmentation, compare Pythia, Sherpa and Herwig++

Theoretical predictions

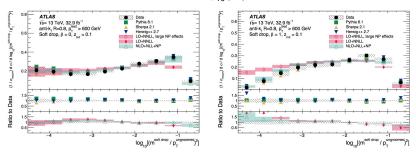


Results compared to

- Predictions from Pythia, Sherpa, Herwig++ generators
- NLO+NLL predictions taken from S. Marzani, L. Schunk and G. Soyez arXiv:1704.02210
- LO+NNLL prediction from C. Frye et al. arXiv:1704.02210, arXiv:0808.1269

expect accuracies to differ in different regions of $\log_{10}(\rho^2)$

- resummation dominates: $-3.7 < \log_{10}(\rho^2) < -1.7$
- ▶ soft and collinear emissions $\log_{10}(\rho^2) < -3.7$ NP effects are larger
- Fixed order region: $\log_{10}(\rho^2) > -1.7$ Wide angle emissions



Results

MC generators and LO+NNLL prediction should be most accurate in the resummation region

NLO+LL should be more accurate at $\log_{10}(\rho^2) > -1.7$

As β increases, soft drop removes less radiation so NP corrections become more important

- good agreement for all predictions and MC within the resummation region
- \blacktriangleright at large β values, larger difference between MC and LO+NLL
- at low $\log_{10}(\rho^2)$ the LO+NLL starts to over predict the data