Observation of the ttH production at $\sqrt{s}=13$ TeV in ATLAS

R. Di Nardo

on behalf of the ATLAS collaboration

University of Massachusetts

Blois 2018: 30th Rencontres de Blois on "Particle Physics and Cosmology"

Introduction

- Discovery of the Higgs boson in 2012
- Properties compatible with SM hypothesis
- key role of the Yukawa interaction describing the coupling between the Higgs field and quarks/leptons
- top quark Yukawa coupling $\lambda_{top} = \sqrt{2} m_t/v\sim 1$
 - largest coupling of Higgs boson to fermion and a key parameter of SM

- λ_{top} probed indirectly though loops in gg \to H and H $\to\gamma\gamma$
- λ_{top} can be probed directly in ttH production
 - process at tree level
 - Large increase in the expected signal cross section from 8 to 13 TeV

Experimental signatures for ttH production

Branching fraction [%] 57.5 ± 1.9
21.6 + 0.0
21.6 ± 0.9
8.56 ± 0.86
6.30 ± 0.36
2.90 ± 0.35
2.67 ± 0.11
0.228 ± 0.011
0.155 ± 0.014
0.022 ± 0.001

- Several final states probed:
 - ttH H→bb : large BR, but limited sensitivity due to high bkg
 - at least one of the W from top with leptonic decay
 - ttH multilepton (H→WW,ττ,ZZ) : smaller rate but also reduced background
 - ttH H→γγ : final state clean very small rate
 - ttH H→ZZ→4I: extremely low rate (~0.01 ev/fb) but highest S/B
- The challenge: large backgrounds (tt+jets, tt+bb, ttW, ttZ)

- H→bb most abundant ttH event sample
 - focus on single lepton and dilepton final states
 - main bkg contribution from tt+HF jets
- Events categorized according to N_i, N_i, b-tagged jets

- tt+≥1b, tt+≥1c, tt+≥light flavour
- One BDT in each SR, with several inputs
 - general kin. variables, b-tag discriminant
 - top and Higgs kinematic variables reconstructed with dedicated BDTs
 - 1D likelihood discriminants, MEM (1lep)

Observed significance:1.4σ (1.6σ expected)

-0.6

-0.4

Classification BDT output

0.75

g 00000

ttH multilepton

- 7 Orthogonal analysis channels
 - overlap with H->ZZ*->4l removed in the 4l category
- jet requirements: N_{jet} ≥ 2, N_{b-tag} ≥ 1
 - 2ℓSS, 2ℓSS+1тhad: Njet ≥ 4
 - 2lOS+1rhad, 1l+2rhad: Njet ≥ 3
- tt suppressed by requirement of at least two SS or additional leptons
- Different bkg composition in the various SR
- Irreducible bkg.
 - estimates rely on MC prediction + validation region
- Reducible bkg
 - Non-prompt light leptons: from b-hadron decays (tt) and photon conversions
 - Electron charge mis-identification (q mis-id):
 from 2lOS tt events
 - Fake Thad: from light flavour jets and mis-identified electrons

$L = 36 \text{ fb}^{-1}$: Phys. Rev. D 97, 072003

ttH multilepton

- BDTs employed in 5/7 channels
 - trained against different bkg according to the different SR
- 3I and 2ISS most sensitive channels
- Systematic uncertainties with largest impact on errors on $\mu_{\text{\tiny ffH}}$ are
 - ttH cross section uncertainty
 - Jet energy scale (JES) and resolution (JER)
 - Non-prompt light lepton estimates,
 large contribution of CR statistics
- Observed (expected) significance at 4.1σ (2.8σ) over SM background
- Alternative fit with free floating normalisation for ttV
 - Same central µ value for signal (degradation in sensitivity)
 - $\mu_{ttZ} = 1.17^{+0.25}_{-0.22}$
 - $\mu_{HW} = 0.92 \pm 0.32$

ttH combination with 36 fb⁻¹

-stat.

Best-fit μ_{a_1} for $m_H=125$ GeV

ATLAS

-total

ttH ZZ

ttH yy

ttH bb

ttH ML

ttH combined

- Combination of ttH Hbb and multilepton together with ZZ*→4I and H→γγ
- Assumptions:
 - tH production treated as background (fixed to SM expectations within theory uncertainties)
 - BR of Higgs decays fixed to SM values
- Observed (expected)
 significance: 4.2 (3.8)σ
- Evidence of ttH production!

ttH (H \rightarrow ZZ* \rightarrow 4l and H \rightarrow $\gamma\gamma$) statistically limited

Analyses updated and improved using 80 fb⁻¹

(tot.) (stat., syst.)

√s=13 TeV, 36.1 fb⁻¹

< 1.9 (68% C.L.)

0.6 $^{+0.7}_{-0.6}$ ($^{+0.7}_{-0.6}$, $^{+0.2}_{-0.2}$)

$ttH (H \rightarrow ZZ^* \rightarrow 41)$

- Analysis updated wrt the evidence paper selection
- H→ZZ*→4l candidates selected first
 - follow the standard 4l couplings analysis
- ttH enriched events selected requiring >0 b-jet and ≥4 leptons
- "Leptonic" category: ≥1 extra lepton and ≥2j
 - cut and count S/B~10
- "Hadronic" category: ≥ 4jets
 - BDT exploiting jet, Zs and ME(H→4I) information to separated ttH against mainly ttZ and ggH
- improvement of ~30% wrt the previous categorization
- expected significance: 1.2σ

no events observed (1 total expected)

$ttH (H \rightarrow \gamma \gamma)$

- 2 isolated photons, p_T > 35, 25 GeV
- At least one jet with p_T > 25 GeV
- Specific ttH categories
 - leptonic (>0 b-jet, >0 leptons)
 - hadronic (>0 b-jet, > 2 jets, 0 leptons)
- Events are then further divided into categories based on an XGBoost BDT discriminant score
 - Training uses energy and direction of photons, jets, leptons, b-tag flag, MET and MET φ
- Simultaneously fit to m_{γγ} spectrum across 7 categories to extract the signal

$ttH (H \rightarrow \gamma \gamma)$

- Higgs signal modeled as a double-sided Crystal Ball function (m_H = 125.09 GeV)
- Background modeled by a smooth falling function
 - functional form from simulated bkg(Lep) or CR (had)
 - Non-ttH Higgs processes are fixed to the SM
 - 100% unc. negligible impact

 had-BDT selects clearly events with top candidates

Main Systematics:

- Exp syst: γ/jet energy scale and resolution, y isolation efficiency (~5%)
- TH syst: Shower uncertainty for ttH signal (8%)

- Observed ttH significance : 4.1σ
 - expected 3.7σ
- Measured cross section at 13 TeV:

$$\sigma_{ttH} = 710^{+210}_{-190} (stat)^{120}_{-90} (syst) \,\text{fb} \quad (SM = 507^{+35}_{-50} \,\text{fb})$$

considering same statistics as for the previous analysis with 36 fb⁻¹
 ~50% improvement

$ttH (H \rightarrow \gamma \gamma)$

Combination

Run2 combination

- updated yy and ZZ→4I (80fb⁻¹)
 combined with ML and H→bb (36 fb⁻¹)
- event overlap negligible
- some syst components on lumi, JES,
 e/y E scale/resolution and ID efficiency
 correlated
- Theory uncertainties correlated between channels
- SM Branching Ratio assumed

Observed ttH significance: 5.8σ

expected 4.9σ

Run1+Run2 combination

Run1 channels: bb,ML,yy

Observed ttH significance : 6.3σ

expected: 5.1 σ

Uncertainty source	$\Delta \sigma_{t\bar{t}H}/\sigma_{t\bar{t}H}$ [%]
Theory uncertainties (modelling)	11.9
$t\bar{t}$ + heavy flavour	9.9
$tar{t}H$	6.0
Non- $t\bar{t}H$ Higgs boson production modes	1.5
Other background processes	2.2
Experimental uncertainties	9.3
Fake leptons	5.2
$ m Jets, \it E_{ m T}^{miss}$	4.9
Electrons, photons	3.2
Luminosity	3.0
au-lepton	2.5
Flavour tagging	1.8
MC statistical uncertainties	4.4

Combination

Measured total cross section of ttH production at √s=13 TeV :

$$\sigma_{ttH} = 670 \pm 90 \, (stat) \,_{-100}^{+110} \, (syst) \, \text{fb}$$
 (SM = $507_{-50}^{+35} \, \text{fb}$)

Measured total cross section of ttH production at √s=8 TeV :

$$\sigma_{ttH} = 220 \pm 100 \, (stat) \, \pm 70 \, (syst) \, \text{fb}$$
 (SM = 133⁺⁶₋₁₃ fb)

Conclusions

- Results presented for ttH searches with 36 and 80 fb⁻¹ of pp collision data
- Improved techniques compared to Run1 for ttH bb ML and yy
- ttH, H→yy and H→ZZ→4l improved sensitivities allowed the observation of the ttH process at 13 TeV
- Observed ttH significance of 6.3 σ
 - direct observation of the Higgs boson Yukawa coupling to the top quark
 - constraint on the λ_{top} coupling at 10-15% level with direct measurement
- Cross section measurement for this process at 13 TeV

$$\sigma_{ttH} = 670 \pm 90 \, (stat) \, ^{+110}_{-100} \, (syst) \, \text{fb}$$
 (SM = $507^{+35}_{-50} \, \text{fb}$)

- Working on further improvements and analysis of Run2 data
 - increase sensitivity on λ_{top} to find possible NP effects

Backup

- Four b-tagging working points calibrated on data:
 - Loose Medium Tight Very Tight corresponding to: 85% -77% - 70% - 60% eff. to tag a b-jet
 - Assign a b-tagging score from 1 to 5 (from not-tagged to 60%)
- b-jets calibrated with ttbar events (2-10% uncertainty, dominated by ttbar modelling)
- c-jets calibrated with ttbar events (W→cs) and W+c events (5-20% uncertainty) light-jets calibrated with dijets events (10-50% uncertainty)

Uncertainty source	Δ	$\overline{\mu}$
$t\bar{t} + \geq 1b \text{ modeling}$	+0.46	-0.46
Background-model stat. unc.	+0.29	-0.31
b-tagging efficiency and mis-tag rates	+0.16	-0.16
Jet energy scale and resolution	+0.14	-0.14
$t\bar{t}H$ modeling	+0.22	-0.05
$t\bar{t} + \geq 1c \text{ modeling}$	+0.09	-0.11
JVT, pileup modeling	+0.03	-0.05
Other background modeling	+0.08	-0.08
$t\bar{t} + \text{light modeling}$	+0.06	-0.03
Luminosity	+0.03	-0.02
Light lepton (e, μ) id., isolation, trigger	+0.03	-0.04
Total systematic uncertainty	+0.57	-0.54
$t\bar{t} + \geq 1b$ normalization	+0.09	-0.10
$t\bar{t} + \geq 1c$ normalization	+0.02	-0.03
Intrinsic statistical uncertainty	+0.21	-0.20
Total statistical uncertainty	+0.29	-0.29
Total uncertainty	+0.64	-0.61

	2ℓSS	3ℓ	4ℓ	$1\ell+2\tau_{\rm had}$	2ℓ SS+ $1\tau_{had}$	2ℓ OS+ $1\tau_{had}$	$3\ell+1\tau_{\rm had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t}, t\bar{t}W, t\bar{t}Z, VV$	tīZ/-	tī	all	$t\bar{t}$	-
Discriminant	2×1D BDT	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1/1	2	2	10	1
Control regions	-	4	-	-		-	-

Luminosity Pileup reweighting Physics Objects	N SN	1
1 0 0	SN	
Physics Objects		1
Electron	SN	6
Muon	SN	15
$ au_{ m had}$	SN	10
Jet energy scale and resolution	SN	28
Jet vertex fraction	SN	1
Jet flavor tagging	SN	126
$E_{ m T}^{ m miss}$	SN	3
Total (Experimental)	r -	191
Data-driven non-prompt/fake leptons and charge misassignment		
Control region statistics	SN	38
Light-lepton efficiencies	SN	22
Non-prompt light-lepton estimates: non-closure	N	5
γ -conversion fraction	N	5
Fake $\tau_{\rm had}$ estimates	N/SN	12
Electron charge misassignment	SN	1
Total (Data-driven reducible background)	_	83
$t\bar{t}H$ modeling		
Cross section	N	2
Renormalization and factorization scales	S	3
Parton shower and hadronization model	SN	1
Higgs boson branching fraction	N	4
Shower tune	SN	1
$tar{t}W$ modeling		
Cross section	N	2
Renormalization and factorization scales	S	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
$tar{t}Z$ modeling		
Cross section	N	2
Renormalization and factorization scales	S	3
Matrix-element MC event generator	SN	1
Shower tune	SN	1
Other background modeling		
Cross section	N	15
Shower tune	SN	1
Total (Signal and background modeling)	_	41
Total (Overall)	-	315

	$2\ell { m SS}$	3ℓ	4ℓ	$1\ell + 2\tau_{\rm had}$	$2\ell SS + 1\tau_{had}$	$2\ell \text{OS} + 1\tau_{\text{had}}$	$3\ell+1\tau_{\rm had}$
BDT trained against	Fakes and $t\bar{t}V$	$t\bar{t},t\bar{t}W,t\bar{t}Z,\mathrm{VV}$	t ar t Z / -	$t ar{t}$	all	t ar t	-
Discriminant	$2\times1\mathrm{D}\;\mathrm{BDT}$	5D BDT	Event count	BDT	BDT	BDT	Event count
Number of bins	6	5	1 / 1	2	2	10	1
Control regions	-	4	-	-	-	-	-

	Expected								
Bin	$t\bar{t}H$ (signal)	Non- $t\bar{t}H$ Hig	ggs Non-Higgs	Total	Total				
	$H o \gamma \gamma$								
Had 1	4.2(11)	0.49(33)	1.76(55)	6.4(13)	10				
${\rm Had}\ 2$	3.41(74)	0.69(56)	7.5(11)	11.6(15)	14				
Had 3	4.70(88)	2.0(17)	32.9(22)	39.6(32)	47				
${\rm Had}\ 4$	3.00(55)	3.2(31)	55.0(28)	61.3(47)	67				
Lep 1	4.5(10)	0.25(9)	2.19(59)	6.9(12)	7				
${\rm Lep}\ 2$	2.23(39)	0.27(10)	4.59(91)	7.1(10)	7				
Lep 3	0.82(18)	0.30(13)	4.58(91)	5.70(88)	5				
$H o ZZ^* o 4\ell$									
Had 1	0.169(31)	0.021(7)	0.008(8)	0.198(33)	0				
Had 2	0.216(32)	0.20(9)	0.22(12)	0.63(16)	0				
Lep	0.212(31)	0.0256(23)	0.015(13)	0.253(34)	0				

