

Interest in High-ղ Muon Upgrade from Florida Tech Muon Group

Marcus Hohlmann

Florida Institute of Technology, Melbourne, FL, USA

 2^{nd} meeting of CMS high- η muon upgrade group - Sep 4, 2009

Outline

- Who we are
- Current detector work
 - on CMS muon detector
 - on MPGDs for Muon Tomography (with RD51)
- Interest in the high- η muon upgrade

Where's Florida Tech ?

Sep 4, 2009

Florida Tech Muon Group

CMS members since 2002; RD51 charter member (2008)

- Faculty:
 - MH (CMS,RD51)
- Research Associate (post-doc):
 - Kondo Gnanvo (RD51, Muon Tomography)
- Graduate Students:
 - Samir Guragain (CMS)
 - Himali Kalakhety (CMS)
 - Amilkar Quintero (Muon Tomography, MPGD)– Lenny Grasso (Muon Tomography, MPGD)
- Several undergraduates (CMS Tier 3, GEANT4, Muon Tomography)

• CMS:

- Hardware alignment of CSCs in Muon Endcaps
 - Focus on reconstruction of CSC positions
 - MH co-convener of Muon Alignment group (DT, CSC, Link)
- Physics: $Z' \rightarrow \mu^+ \mu^-$ search with emphasis on endcap muons and impact from (mis)alignments

Muon Tomography for Cargo Inspection:

- Construction of prototypes of MT station with triple-GEM detectors
 - Currently constructing 10 30cm×30cm GEM detectors
 - Next prototype planned with large-area GEMs (~ 1 m²)

Sep 4, 2009

CSC Alignment Hardware

Sep 4, 2009

Muon Tomography with GEM detectors

Major Challenge in Detecting Nuclear Contraband: Shielding!

 In 2002, reporters managed to smuggle a cylinder of depleted uranium shielded in lead in a suitcase from Vienna to Istanbul via train and in a cargo container through radiation monitors into NY harbor. Cargo was even flagged for extra screening, but DU undetected.

6.8 kg DU

HEU can be hidden from conventional radiation monitoring because it is easy to shield emanating radiation within regular cargo

Sep 4, 2009

Idea: Use <u>multiple scattering of charged particles in matter</u> to detect high-Z material

Multiple Coulomb scattering:

• to 1st order produces Gaussian distribution of scattering angles θ with width $\sigma = \theta_0$:

 $\Rightarrow \underline{\theta_0} \sim \text{proportional to Z}, \sqrt{\rho}$; measuring muon scattering angles is sensitive to Z

Advantages:

- Cosmic ray muons are
 - highly penetrating since they are minimum ionizing particles
 - (e.g. range of a 3 GeV muon is 186 cm in Pb; 242 cm in Fe)
 - \Rightarrow sensitive to high-Z nuclear material even if material is heavily shielded by cargo
 - <u>ubiquitous & free</u> \Rightarrow passive interrogation without artificial radiation source or beam
 - <u>come in from many directions</u> \Rightarrow allows tomographic 3D imaging

Main Challenges:

- Low cosmic ray muon rate of ~ 1 cm⁻² min⁻¹ is fixed \Rightarrow integration times important
- Need to cover large volumes with muon tracking detectors

Sep 4, 2009

MT with Drift Tubes

Original idea from Los Alamos (2003): Muon Tomography with Drift Tubes

J.A. Green et al., "Optimizing the Tracking Efficiency for Cosmic Ray MuonTomography", LA-UR-06-8497, IEEE NSS 2006

S. Pesente et al., SORMA West 2008, Berkeley, June 2008; & CRETE '09, June 2009

Sep 4, 2009

Efforts also by Tsinghua U., IHEP Protvino, Decision Science (U.S. commercial), UK, Canada

INFN Padova, Pavia & Genova: Muon Tomography with spare CMS Muon Barrel Chambers (Drift Tubes)

MT with Drift Tubes: A Commercial Approach

Design by Decision Sciences Corp. in cooperation with Los Alamos National Lab

Use Micro Pattern Gaseous Detectors for tracking cosmic ray muons

ADVANTAGES:

- □ small detector structure allows <u>compact, low-mass MT station</u>
 - thin detector layers
 - small gaps between layers
 - small scattering in detector itself
- □ high MPGD spatial resolution

(~ 50 μm) provides good scattering angle measurement with short tracks

□high tracking efficiency

CHALLENGES:

□ large-area MPGDs

Iarge number of electronic readout channels

 $\Box \Rightarrow cost$

Sep 4, 2009

Sep 4, 2009

M. Hohlmann - Florida Tech interest in high-eta muon upgrade

Florida

Tech

Angular Resolution I

- Finite spatial hit resolution and multiple scattering in the MT tracking station itself leads to <u>finite angular track resolutions</u>
- Compare <u>polar angle θ</u> of reconstructed muon tracks with "true" track angle from MC at exit of tracking station:

- Spatial hit resolution for GEMs depends on track inclination (θ)
- Parameterize measurements by MPI Munich group for MC:

Sep 4, 2009

Δθ_{polar} for Drift Tubes with 3 Detector Layers, 400µm Resolution, 270mm Gap GEMs with 4 Detector Layers, 50µmResolution, 150mm Gap

Sep 4, 2009

 $\Delta \theta_{polar} \, [mrad]$ M. Hohlmann - Florida Tech interest in high-eta muon upgrade

- Simple reconstruction algorithm using Point of Closest Approach ("POCA") of incoming and exiting 3-D tracks
- Treat as single scatter
- Scattering angle:

$$\theta = \cos^{-1}\left(\frac{\vec{a}\cdot\vec{b}}{|a||b|}\right)$$

(with θ >0 by definition)

Threat Scenario: Van

Van Reconstructions in 3D

Florida <u>Tech</u>

θ_{scatt} [°]

GEMs

Mean Angle (w/o momentum)

zpoca:ypoca:xpoca:vpoca

Drift Tubes

zpoca:ypoca:xpoca:vpoca

Sep 4, 2009

Max. Likelihood Method

Sep 4, 2009

M. Hohlmann - Florida Tech interest in high-eta muon upgrade

 Ongoing construction of first small MT prototype using 10 triple-GEM detectors with 30cm × 30cm active area each:

Triple-GEM design

Sep 4, 2009

All components produced by CERN (Rui's workshop) :

GEM Detector Assembly

CERN cleanrooms

- •3 detectors assembled (still need HV board)
- •5 more to be completed at CERN late September / early October
- •2 to be assembled at FI. Tech later \Rightarrow know-how transfer to home institute

Near-term Plans

Operate first small MT prototype in minimal configuration *as soon as*

- stap shipley 2 top & 2 bottom detectors using existing GASSIPLEX front-end electronics
 - 4 GASSIPLEX cards per detector (= 4 × 96 ch. per detector) to read out central detector areas only (in both x & y)
 - 16 GASSIPLEX cards needed in total (= 4 det. × 4 cards per det. × 96 ch. per card = 1536 ch. total)
- have built a stand to accommodate 4-6 detectors in simple top & bottom configuration (L.Grasso)
- have modified CAST DAQ software (U. Athens) to accommodate 16 GASSIPLEX cards to be read out with 8 CAEN CRAMs ADC cards (K. Gnanvo); to be tested with DAQ h/w
- redesigning adaptor for Panasonic connector (on GEM detector) to SAMTEC connector (on GASSIPLEX) (K. Gnanvo)

MT prototype stand with GEM mock-up

Sep 4, 2009

Labview Frontpanel

Sep 4, 2009

Longer-term Plans

Medium-term: Operate first small MT prototype <u>fully</u> instrumented

- use 3 top, 3 bottom detectors, and 4 side detectors
- adopt & test FE electronics and DAQ being developed by RD51 as soon as available (need ~15k channels)
- Build & test increasingly large GEMs and GEM-MT prototypes
 - Contribute to development of large-area GEM detectors (0.5 -1 m²) within RD51
 - Build second MT prototype with ~1m³ probed volume
 (= currently stated goal of the Muon Tomography project)
 - Investigate methods for reducing number of required electronic channels,
 e.g. charge spreading with resistive layers on readout strips; delay lines

- Interested in combining CMS & MPGD work into one project

 Apply know-how gained with GEM work in MT project to CMS high-η muon upgrade

CMS high-ղ muon upgrade

Potential contributions from FI. Tech muon group:

- R&D on large-area GEM detectors
 - Construction techniques (stretching of large foils, alternatives !?)
 - Detector simulations (GARFIELD-style)
- MPGD Electronics issues are currently on the critical path; would be interested to help if possible
- Ten 30cm × 30cm GEM detectors could be made available for tests in CMS (with different electronics) once not needed for MT project anymore (2010?)
- Could try to approach DOE for funding through base grant or "Advanced Detector Research" program
- We are happy to discuss all possibilities within this group! Thank you...

Backup Slides

Sep 4, 2009

M. Hohlmann - Florida Tech interest in high-eta muon upgrade

31

Scattering Angle Distributions

Sep 4, 2009

M. Hohlmann - Florida Tech interest in high-eta muon upgrade

Angular Resolution III

Sep 4, 2009

- Test hypothesis that voxels with an excess over Fe actually contain U
- Flag only voxels where mean Θ_{voxel} is within 99% confidence interval around expected mean Θ_U for Uranium (based on high-statistics U samples)

M. Hohlmann - Florida Tech interest in high-eta muon upgrade

10 min exposure

min exposure

Reconstruction Improvement with Florida Momentum Information

$$\theta_{scattering} \propto \sim \mathbf{p}^{-1}$$

• Reconstruct scattering density λ of material:

$$\lambda = \frac{(\theta_{scattering})^2}{2L(1+E_p^2)} \left(\frac{p}{p_0}\right)^2$$

- L = path length of muon within target (set to 1, a priori unknown) $E_p = \text{momentum error (set to 0 for now)}$
- p^{r} = momentum of cosmic ray muons
- p_0 = average momentum of cosmic ray muons (3 GeV)
- Use average λ value in ith voxel as statistic:

 $\lambda_{ij} = \lambda$ -value for jth muon scattered in ith voxel (based on POCA)

 N_i = number of muons scattered in ith voxel

Caveat: As currently designed, neither detector type (DT, GEM) actually provides a momentum measurement; this would require additional instrumentation

Sep 4, 2009

Maximum Likelihood Method:

Reproducing Los Alamos Expectation Maximization (EM) algorithm

• Input: Use lateral shift $\Delta x_{\underline{i}}$ in multiple scattering in addition to information from scattering angle $\theta_{\underline{i}}$ for each muon track

• Procedure:

- Maximize log-likelihood for assignment of scattering densities to all voxels given all observed muon tracks
- Analytical derivation leads to iterative formula for incrementally updating λ_k values in each iteration
- **Output:** Scattering density λ_i for each voxel of the probed volume

Sep 4, 2009