Update: Thermal Imaging

WILLIAM HEIDORN
IOWA STATE UNIVERSITY
ISU WEEKLY STAVE QA MEETING
MAY 9, 2018

Since Last Time...

- Stave Reproducibility Tests
 - ▶ Took 5 sets of "identical" measurements
 - ▶ Took 4 sets of "changing air off waiting time" measurements
 - ▶ Took 3 sets of "waiting time after hitting temperature" measurements
 - ► Took 2 sets with different RPMs

Variables- What We Control

- We can only control a few variables in the measurements
 - Time since reached set point (TSRSP)
 - Air off wait time
 - ▶ T set at chiller
 - Booster Pump RPM

Variables-What we directly measure

- Thermocouples (measured every 1 sec in log)
 - ▶ T_in: temperature of the fluid going into the stave
 - ▶ T_out: temperature of the fluid going out of the stave
 - ▶ T_box: temperature floating in the box above the cradle
 - ▶ T_room: temperature floating above the table in the room
- Humidity Sensor(measured every 10 secs in log)
 - Humidity: measured by the sensor near the end of the stave
- Thermal Image
 - ▶ Image: average of 200 frames taken at 25 frames/sec
 - ▶ Then converted to profile along stave
 - > Stave is never moved, so the frameanal.py always uses the same stave area

Variables- Extracting data

- Using the log, the directly measured variables are found for the 60 seconds before and after the time the image is taken (using the file timestamp).
- The mean and standard deviation for each is found. The combined uncertainty includes the statistical uncertainty (fluctuations during the time) and the systematic uncertainty (precision of the measuring device)
- Slope of each variable is also found over the 2 minutes to find the current rate of change of the variable and its uncertainty.

Final Chosen Variables

- T_set: Chiller Set Temperature
- RPM: Booster pump RPMs
- ► TSRSP: Time since reached set point
- Air Wait: Time waited with air off before image was taken
- ► T_in: Temperature of fluid into the stave
- T_loss: Temperature of fluid lost through the stave
- ▶ T_box: Temperature inside the containment
- ► T_room: Temperature in the room
- Humidity: In containment

Reproducibility- Constants (mostly)

- Five sets were taken with
 - ► T_set = -55, 50 C
 - \triangleright RPMs = 26.7, 21.4 rpm (corresponds to ~11/min flow rate)
 - ► TSRSP = 0 min (hard to get precise, using log values +/- 1.4 min in actuality)
 - ► Air Wait = 10 min

Reproducibility-Hot

- R2, R3, R5 best bunch
- Spread of around 0.5-0.8 C
 - Okay Reproducibility

Reproducibility-Hot: Other Differences

Reproducibility-Cold

- R3, R4 most similar
- Spread of around 4 C!
 - Reproducibility at -40 C is hard...

Reproducibility-Cold: Other Differences

Changing Air Off Time Length Hot

Changing the amount of time with the air off increases the thermal profile

Changing Air Off Time Length Cold

- Shape of the profile changes with more time without air...
- Not a simple change like was seen with hot fluid

Changing Wait Time Hot

 Longer wait time gives a higher temperature profile

Changing Wait Time Cold

Longer wait time changes the profile's shape and pushes it closer to ambient

Changing RPMs Hot

 All three lines have different fluid flow rates.

▶ Black: 0.9 I/min

Red: 1 I/min

► Green: 1.1 I/min

Changing RPMs Cold

 All three lines have different fluid flow rates

▶ Black: 0.9 I/min

Red: 1 I/min

► Blue: 1.1 I/min

Conclusions

- More work to be done extracting information from the thermocouples...
- So far...
 - ▶ Precise reproduction for hot(cold) temperatures fell within 0.5-0.8 (~4) C
 - High temperature
 - ▶ Longer wait times correspond to higher temperatures
 - ► Higher RPMs correspond to greater energy transfer
 - Cold temperature
 - ▶ Longer wait times correspond to weird shapes...
 - Differing RPMs don't seem to change the spectrum?
 - More Questions than answers so far...

Backup Slides