### Stave6 Local Flatness

Shuaiyan 2018/06/13

### First Method for selecting data

- Eliminate the points with rms larger than 15 um. These points are neither used for calculating the plane or distance.
- Divide 98\*220 pixel area into 5\*5 & 3\*5 pixel areas. In each small area, find the median height which will be used for calculating plane. The maximum number of points for calculating plane is 880.
- All small areas contribute median heights except for module 1 since 24 areas have fewer than five rms<15 um points.
- Below is the fitting results for each module. (even numbered slides)
- The blank area in the distance plot indicates the point either having a rms>15 or below the stave surface. Three blue dots indicate the points used for calculating plane.
- Negative distance plot gives the location where the plane is below the stave surface.

### Second Method for selecting data

Use the built in function "Lowpassfilter" to eliminate the noise height. The filtered data is used.

- Divide 98\*220 pixel area into 5\*5 & 3\*5 pixel areas. In each small area, neglect the points with a difference larger than 40um compared to averaged value, then use the averaged value to represent the height for this area.
- If the available points in any area is fewer than 30%, the entire area will be rejected.
- The rejected areas for each module is around 25.
- The maximum number of points for calculating plane is 880.
- The neglected points and rejected areas are not used for calculating the plane, but they are still used for calculating distance.
- Below is the fitting results for each module. (odd numbered slides)
- The blank area in the distance plot indicates the points below the stave surface. Three blue dots indicate the points used for calculating plane.
- Negative distance plot gives the location where the plane is below the stave surface.





































180 200 Distance (μm)















































































## Back up: Plot of filtered data vs scanned data

Blue dots: filtered data



# Back up: Location of the rejected areas (2<sup>nd</sup> method)

• The rejected areas/points for each module is similar.

