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Model-specific	searches	for	dark	matter	at	the	LHC	
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Model-specific	searches	for	dark	matter	at	the	LHC	
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Systematics	 Data-driven	background	constraint	
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Circumventing	model-dependence?...additional	output	
	
•  Obvious	issues	with	model-specific	limits:	

–  results	valid	for	narrow	class	of	theories	
–  reinterpretations	difficult	for	models	with	different	event	topology	
–  how	to	combine	with	other	measurements?	(i.e.	different	channels/experiments)	
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•  To	avoid	these	issues,	collaborations	publish	information	about	the	data:	
–  observed	and	expected	event	yields	in	signal	region	
–  ‘model-independent	limits’	on	σ	×	A	×	ε	
–  but	still	need	to	know	A	×	ε	to	utilise	the	data	
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Circumventing	A	×	ε	if	outside	of	the	collaboration			

•  Approach	1:	use	detector	smearing	functions		
–  Example:	DELPHES	or	BuckFast	
–  Simple	approximation	of	the	detector	response	for	each	reconstructed	object.	
–  Requires	validation	for	each	analysis,	i.e.	reproducing	event	yields	for	BSM	

benchmarks	(cumbersome).	
	

•  Approach	2:	use	recasting	framework:	https://arxiv.org/pdf/1010.2506.pdf		
–  Archive	of	each	data	analysis	and	simulation	framework	from	each	collaboration	
–  Cloud-based	service	to	compare	new	physics	model	to	data	
–  Likely	a	large	overhead	in	service	development	and	service	maintenance	
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A	different	approach:	detector-corrected	observables	

•  Idea:	construct	dark-matter-sensitive	observables	that	are	free	from	detector	
inefficiency	and	resolution	

	

		
•  In	the	SM,	the	numerator	consists	of	only	Z-bosons	decaying	to	neutrinos.	
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Correction	for	detector		
inefficiency	and	resolution	

Number	of	background-subtracted		
events	in	l+l-	+	jets	signal	region	

Number	of	background-subtracted		
events	in	MET+jets	signal	region	
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Cancellation	of	systematic	uncertainties	

•  Rmiss	designed	for	cancellation	of	dominant	experimental/theoretical	uncertainties:	
–  Jet	energy	scale	and	resolution	
–  QCD	uncertainties	in	shape	of	backgrounds	(Z+jets)	
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Impact	of	BSM	physics	on	the	correction	for	detector	effects	

•  Correction	factor	determined	from	simulation	of	Rmiss	
–  QCD	scale	variations	in	Z+jets	production	cancel	in	the	Rmiss	ratio	
–  Presence	of	BSM	physics	potentially	spoils	the	cancellation	
–  Very	small	effect	for	new	physics	models	that	produce	only	pTmiss	+	jets	
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Measurement	of	Rmiss	in	a	‘mono-jet’	phase	space	

•  pTmiss	>	200	GeV	
•  zero	leptons	within	fiducial	

volume		
•  leading	jet	pT	>	120	GeV	
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Measurement	of	Rmiss	in	a	VBF	phase	spaces	

•  Two	jets:	pT,1	>	80	GeV	and	pT,2	>	50	GeV		
•  No	third	jet	between	tagging	jets	
•  Dijet	invariant	mass	>	250	GeV	
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Determination	of	statistical	and	systematic	correlations	
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Statistical	correlations	 Total	covariance	matrix	(C)		



Constraints	on	simplified	dark	matter	models	

•  Limits	set	using	CLs	after	constructing	
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Easy	reinterpretation	of	data	for	any	model	of	interest…..	

•  Observables	and	covariance	matrices	
published	on	HEPDATA.	

•  Rivet	routine	provided	for	fast	comparison	
of	any	model	to	the	data.	
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Different	experimental	approaches	to	probing	the	Higgs	couplings	

Fiducial	and	differential		
cross	sections	

Production	mechanism		
signal	strengths	

Coupling	strengths	
(κ-framework)	

SM	effective		
field	theory	

Pseudo-observables	

Raw	event	yields	in	
detector	

-  Experimental	measurements	
-  Theoretical	interpretations	
-  Dashed	means	not	yet	demonstrated	

Constraints	on		
Effective	Lagrangian	

Simplified	Template		
Cross	Sections		
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Constraints	on	effective	Lagrangian	operators	

•  Constraint	on	specific	operators	in	effective	
Lagrangian	via	simultaneous	fit	to	5	observables	
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Constraints	on	effective	Lagrangian	terms	in	H->yy	

•  Proof	of	principle:	set	2D	constraints	on	CP-even	and	CP-odd	couplings	to	gluons	(left)	
and	weak	bosons	(right)	

•  All	data/correlations	public:	can	repeat	with	favourite	EFT	basis	or	BSM	physics	model	
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Using	Higgs	data	to	search	for	resonantly-enhanced	dark	matter	
production	
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Summary	

•  LHC	data	cost	billions	to	produce,	must	make	sure	it	is	as	useful	as	possible:	
–  Ensure	longevity	of	the	data	
–  Allow	future	reinterpretations	and	combinations	of	multiple	analyses	
–  Facilitate	model	building	

•  Producing	detector-corrected	observables	achieves	all	of	those	goals	
–  Proof-of-principle	for	dark-matter	searches	published	in	EPJ	C77	(2017)	765	

•  HEPDATA:	https://www.hepdata.net/record/78366		
•  Rivet:	http://rivet.hepforge.org/analyses/ATLAS_2017_I1609448.html	

–  Existing	measurements	of	Standard	Model	processes	can	be	used	as	well		
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