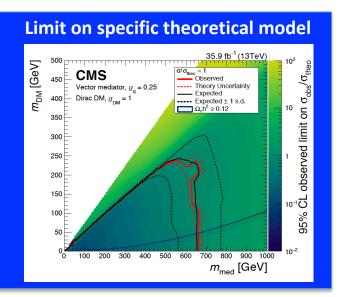
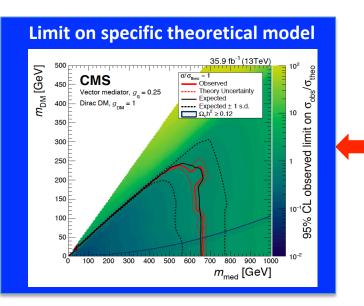


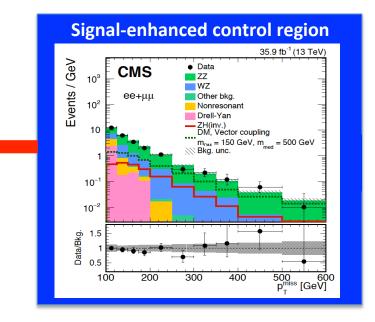
The University of Manchester

CELEBRATING 350 YEARS

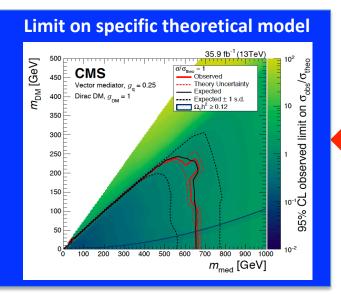

Presenting LHC data in a way that is useful for modelling and reinterpretation

Andrew Pilkington – University of Manchester Presented at 'Dark Matter at the Dawn of Discovery', Heidelberg, 9th April 2018

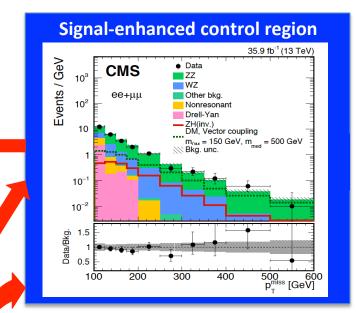

<u>Outline</u>


- 1) The motivation for a new approach
- 2) Proof-of-principle for dark matter searches
- 3) The ease of reinterpretations
- 4) An example from the Higgs sector

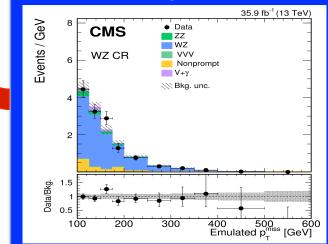
Model-specific searches for dark matter at the LHC



Model-specific searches for dark matter at the LHC



Model-specific searches for dark matter at the LHC



Systematics

Source of uncertainty			Impact on the										
Source of uncertainty	Signal	ZZ	WZ	NRB	DY	exp. limit (%)							
* VV EW corrections	—	10	-4	_	_	14 (12)							
* Renorm./fact. scales, VV	_	9	4	_	—								
* Renorm./fact. scales, ZH	3.5	_	_	—	_								
* Renorm./fact. scales, DM	5	—	—	—	—								
* PDF, WZ background	_	_	1.5	—	_	2 (1)							
* PDF, ZZ background	_	1.5	—	_	—	2 (1)							
* PDF, Higgs boson signal	1.5	_	_	—	_								
* PDF, DM signal	1–2	_	_	_	_								
NRB extrapolation to the SR	_	_	_	20	_	<1							
DY extrapolation to the SR	_	100				<1							
Lepton efficiency (WZ CR)	_	—	3	_	_	<1							
Nonprompt bkg. (WZ CR)	_	_	_	_	30	<1							
Integrated luminosity			<1										
* Electron efficiency			1	.5									
* Muon efficiency				L									
* Electron energy scale	5												
* Muon energy scale													
* Jet energy scale	1–3 (typically anticorrelated w/ yield) $1 (<1)$												
* Jet energy resolution	1 (typically anticorr.)												
* Unclustered energy (p _T ^{miss})	Unclustered energy (p_T^{miss}) 1–4 (typically anticorr.), strong in DY												
* Pileup	1 (typically anticorrelated)												
* b tagging eff. & mistag rate 1													

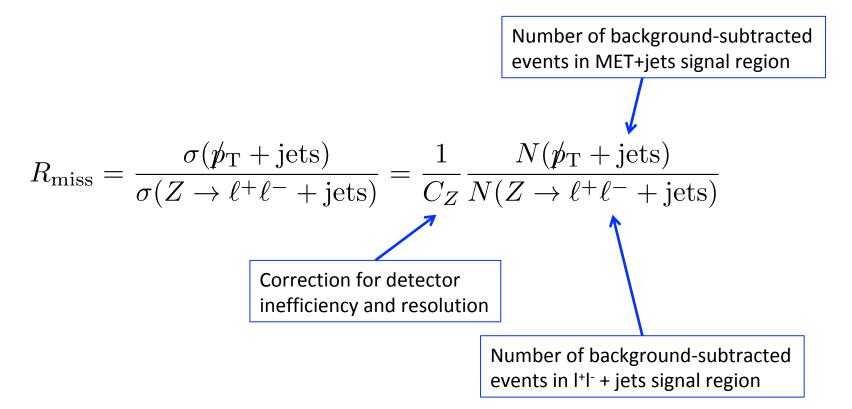
Data-driven background constraint

Circumventing model-dependence?...additional output

- Obvious issues with <u>model-specific</u> limits:
 - results valid for narrow class of theories
 - reinterpretations difficult for models with different event topology
 - how to combine with other measurements? (i.e. different channels/experiments)

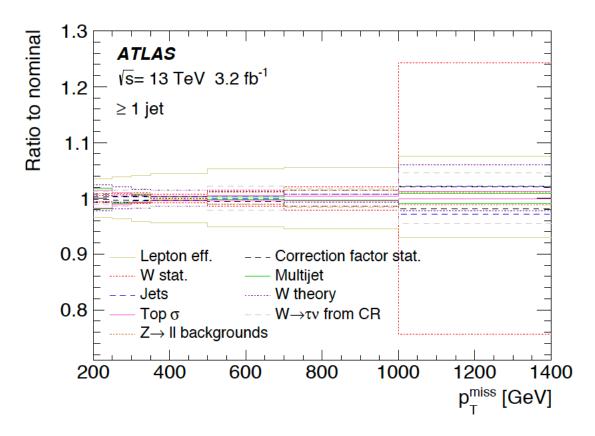
Circumventing model-dependence?...additional output

- Obvious issues with <u>model-specific</u> limits:
 - results valid for narrow class of theories
 - reinterpretations difficult for models with different event topology
 - how to combine with other measurements? (i.e. different channels/experiments)
- To avoid these issues, collaborations publish information about the data:
 - observed and expected event yields in signal region
 - 'model-independent limits' on $\sigma \times A \times \epsilon$
 - but still need to know $A \times \varepsilon$ to utilise the data


Selection	$\langle \sigma \rangle_{\rm obs}^{95}$ [fb]	Inclusive Signal Region								
		– Region	Predicted	Observed						
IM1	531	IM1	245900 ± 5800	255486						
IM2	330	IM2	138000 ± 3400	144283						
IM3	188	IM3	73000 ± 1900	76808						
IM4	93	IM4	39900 ± 1000	41523						
IM5	43	IM5	12720 ± 340	13680						
IM6	19	IM6	4680 ± 160	5097						
		IM7	2017 ± 90	2122						
IM7	7.7	IM8	908 ± 55	980						
IM8	4.9	IM9	464 ± 34	468						
IM9	2.2	IM10	238 ± 23	245						
IM10	1.6									
		ATLAS Colla	aboration, JHEP 01 (201	8) 126						

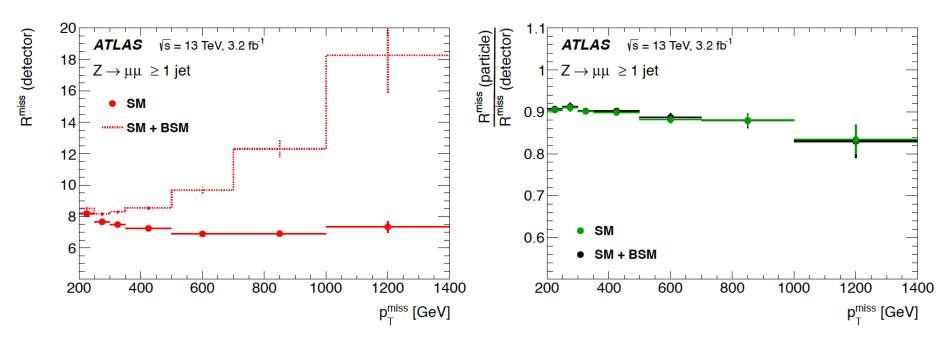
Circumventing A $\times\,\epsilon$ if outside of the collaboration

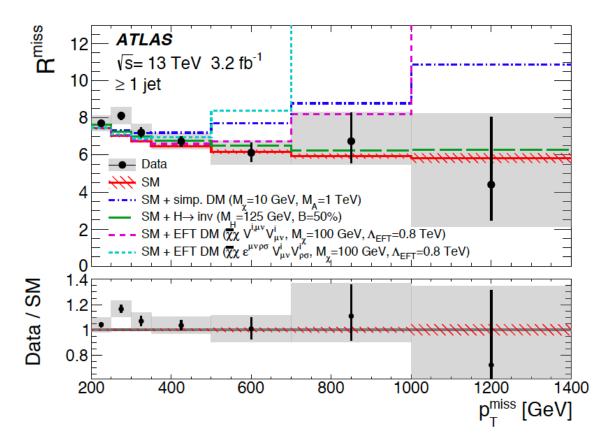
- Approach 1: use detector smearing functions
 - Example: DELPHES or BuckFast
 - Simple approximation of the detector response for each reconstructed object.
 - Requires validation for each analysis, i.e. reproducing event yields for BSM benchmarks (cumbersome).
- Approach 2: use recasting framework: <u>https://arxiv.org/pdf/1010.2506.pdf</u>
 - Archive of each data analysis and simulation framework from each collaboration
 - Cloud-based service to compare new physics model to data
 - Likely a large overhead in service development and service maintenance

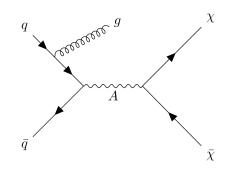

A different approach: detector-corrected observables

• <u>Idea</u>: construct dark-matter-sensitive observables that are free from detector inefficiency and resolution

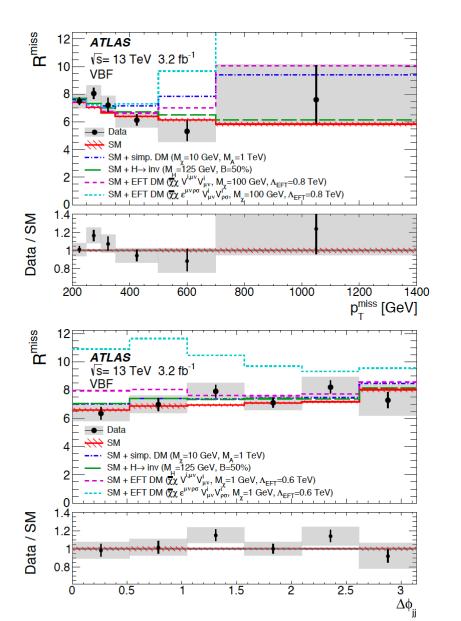
• In the SM, the numerator consists of only Z-bosons decaying to neutrinos.

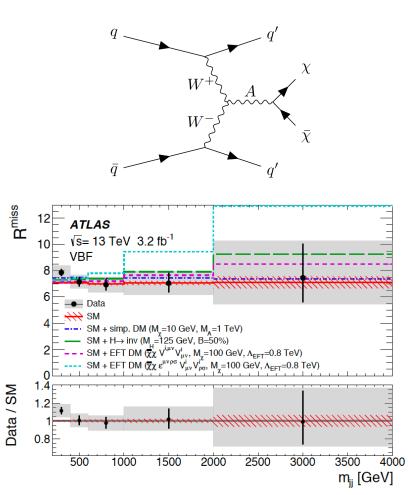

Cancellation of systematic uncertainties


- R^{miss} designed for cancellation of dominant experimental/theoretical uncertainties:
 - Jet energy scale and resolution
 - QCD uncertainties in shape of backgrounds (Z+jets)


Impact of BSM physics on the correction for detector effects

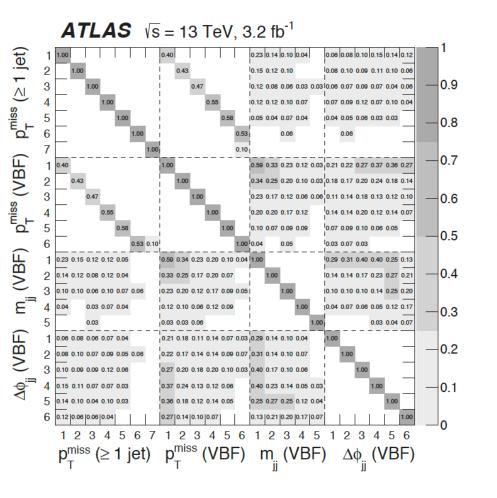
- Correction factor determined from simulation of R^{miss}
 - QCD scale variations in Z+jets production cancel in the R^{miss} ratio
 - Presence of BSM physics potentially spoils the cancellation
 - Very small effect for new physics models that produce only p_T^{miss} + jets


Measurement of R^{miss} in a 'mono-jet' phase space



- p_T^{miss} > 200 GeV
- zero leptons within fiducial volume
- leading jet $p_T > 120 \text{ GeV}$

Measurement of R^{miss} in a VBF phase spaces

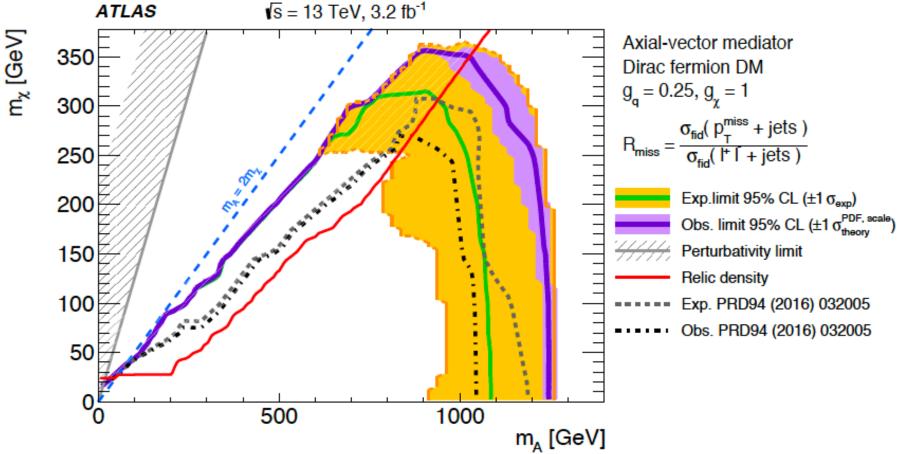


- Two jets: $p_{T,1} > 80$ GeV and $p_{T,2} > 50$ GeV
- No third jet between tagging jets
- Dijet invariant mass > 250 GeV

9

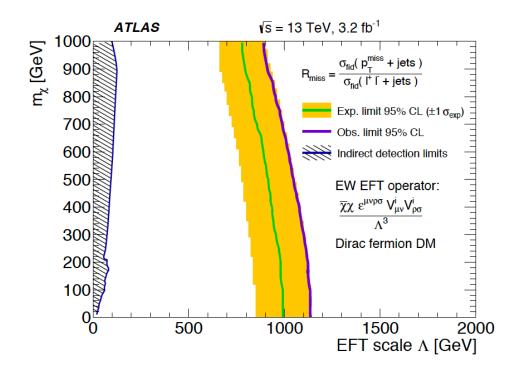
Determination of statistical and systematic correlations

ATLAS $\sqrt{s} = 13 \text{ TeV}, 3.2 \text{ fb}^{-1}$

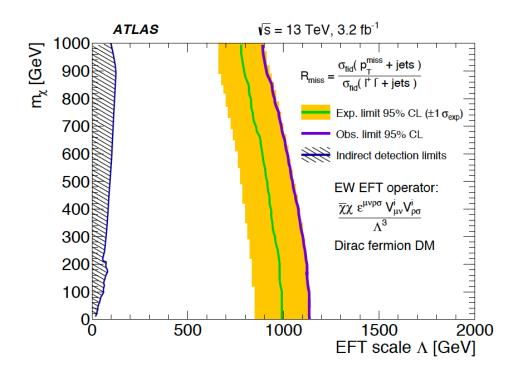

													·			_						_			_	
et	1	0.18 0.14	0.12	0.10	0.09	0.09	0.11	0.18	0.14	0.12	0.09	0.08	0.09	0.17	0.14	0.14	0.17	0.22	0.12	0.14	0.14	0.14	0.20	0.30		
-	2	0.14 0.20	0.14	0.12	0.12	0.12	0.14	0.15	0.19	0.14	0.11	0.10	0.12	0.17	0.14	0.14	0.16	0.22	0.13	0.15	0.14	0.14	0.19	0.26	_	10
<u></u>	3	0.12 0.14	0.21	0.12	0.12	0.13	0.14	0.12	0.14	0.20	0.11	0.10	0.13	1 <mark>0.14</mark>	0.13	0.12	0.15	0.21	0.11	0.14	0.13	0.12	0.16	0.22	_	
	4	0.10 0.12	0.12	0.19	0.12	0.13	0.14	0.10	0.12	0.12	0.17	0.10	0.11	1 <mark>0.12</mark>	0.11	0.11	0.13	0.17	1 <mark>0.10</mark>	0.13	0.12	0.10	0.14	0.17		
T	5	0.09 0.12	0.12	0.12	0.45	0.16	0.15	0.09	0.13	0.13	0.12	0.38	0.15	0.11 	0.11	0.12	0.13	0.19	<mark>0.11</mark>	0.14	0.12	0.10	0.12	0.16	_	
<u>d</u>	6	0.09 0.12	0.13	0.13	0.16	2.54	0.20	0.09	0.15	0.14	0.12	0.15	2.23	0.12	0.10	0.14	0.14	0.22	0.12	0.18	0.13	0.10	0.13	0.16	_	
	7	0.11 0.14	0.14	0.14	0.15	0.20	14.68	0.10	0.16	0.15	0.13	0.13	1.17	0.13	0.11	0.10	0.17	0.37	0.13	0.17	0.13	0.11	0.15	0.18		
Ш	1	0.18 0.15	0.12	0.10	0.09	0.09	0.10	0.28	0.16	0.14	0.09	0.09	0.09	0.23	0.19	0.18	0.21	0.27	0.16	0.18	0.18	0.19	0.28	0.41	_	
3	2	0.14 0.19	0.14	0.12	0.13	0.15	0.16	0.16	0.36	0.15	0.12	0.11	0.14	0.20	0.18	0.18	0.20	0.27	0.17	0.19	0.18	0.18	0.24	0.33		
) s	3	0.12 0.14	0.20	0.12	0.13	0.14	0.15	0.14	0.15	0.45	0.12	0.11	0.14	0.18	0.16	0.16	0.17	0.30	0.14	0.18	0.18	0.15	0.20	0.28		
miss T	4	0.09 0.11	0.11	0.17	0.12	0.12	0.13	0.09	0.12	0.12	0.30	0.10	0.11	0.13	0.13	0.13	0.16	0.18	0.12	0.15	0.14	0.12	0.15	0.19		
<u>o</u>	5	0.08 0.10	0.10	0.10	0.38	0.15	0.13	0.09	0.11	0.11	0.10	0.75	0.12	0.12	0.11	0.12	0.16	0.19	0.11	0.15	0.13	0.10	0.13	0.16		
	6	0.09 0.12	0.13	0.11	0.15	2.23	1.17	0.09	0.14	0.14	0.11	0.12	6.54	0.13	0.11	0.16	0.16	0.19	0.14	0.22	0.14	0.10	0.14	0.17		1
/BF	1	0.17 0.17	0.14	0.12	0.11	0.12	0.13	0.23	0.20	0.18	0.13	0.12	0.13	0.26	0.15	0.15	0.18	0.24	0.17	0.20	0.20	0.19	0.25	0.35	_	
3	2	0.14 0.14	0.13	0.11	0.11	0.10	0.11	0.19	0.18	0.16	0.13	0.11	0.11	10.15	0.27	0.13	0.16	0.22	10.14	0.16	0.16	0.16	0.23	0.32	_	
	3	0.14 0.14	0.12	0.11	0.12	0.14	0.10	0.18	0.18	0.16	0.13	0.12	0.16	0.15 	0.13	0.35	0.16	0.21	0.14 	0.16	0.15	0.16	0.24	0.33	_	
E	4	0.17 0.16	0.15	0.13	0.13	0.14	0.17	0.21	0.20	0.17	0.16	0.16	0.16	<mark>0.18</mark> 	0.16	0.16	0.88	0.24	0.16 	0.19	0.18	0.17	0.27	0.42	-	
	5	0.22 0.22	0.21	0.17	0.19	0.22	0.37	0.27	0.27	0.30	0.18	0.19	0.19	0.24	0.22	0.21	0.24	7.70	0.20	0.27	0.20	0.23	0.35	0.58	_	
ш	1	0.12 0.13	0.11	0.10	0.11	0.12	0.13	0.16	0.17	0.14	0.12	0.11	0.14	0.17	0.14	0.14	0.16	0.20	0.34	0.12	0.12	0.11	0.15	0.22		
VB	2	0.14 0.15	0.14	0.13	0.14	0.18	0.17	0.18	0.19	0.18	0.15	0.15	0.22	0.20	0.16	0.16	0.19	0.27	0.12	0.43	0.14	0.13	0.18	0.27	_	
<u>ر</u>	3	0.14 0.14	0.13	0.12	0.12	0.13	0.13	0.18	0.18	0.18	0.14	0.13	0.14	0.20	0.16	0.15	0.18	0.20	0.12	0.14	0.35	0.13	0.17	0.24		
3	4	0.14 0.14	0.12	0.10	0.10	0.10	0.11	0.19	0.18	0.15	0.12	0.10	0.10	0.19	0.16	0.16	0.17	0.23	0.11	0.13	0.13	0.27	0.18	0.26		
7	5	0.20 0.19	0.16	0.14	0.12	0.13	0.15	0.28	0.24	0.20	0.15	0.13	0.14	0.25	0.23	0.24	0.27	0.35	0.15	0.18	0.17	0.18	0.53	0.44		10-1
	6	0.30 0.26	0.22	0.17	0.16	0.16	0.18	0.41	0.33	0.28	0.19	0.16	0.17	0.35	0.32	0.33	0.42	0.58	0.22	0.27	0.24	0.26	0.44	1.22	_	10
		1 2	3	4	5	6	7	1	2	3	4	5	6	1	2	3	4	5	1	2	3	4	5	6		
		pmis	s (\geq	1 i	et)	p	mis	s (V	BF	=)	r	n	(\	/B	F)		Δ	φ	(\	/B	F)		
		T	``		. 1		/	17-	Т				1	1	ij			. /			ij		_	. /		

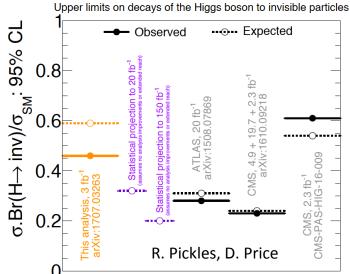
Statistical correlations

Total covariance matrix (C)

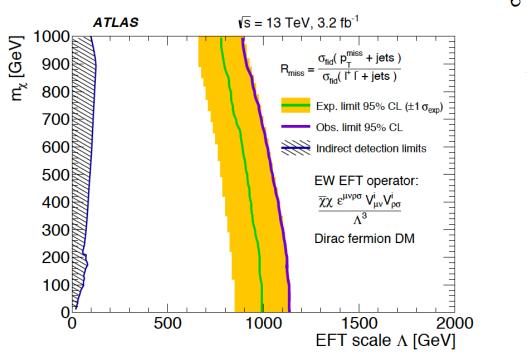

Constraints on simplified dark matter models

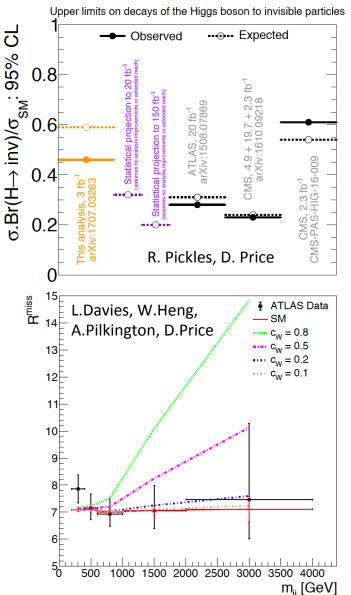
• Limits set using CLs after constructing $\chi^2 = (\mathbf{y}_{data} - \mathbf{y}_{pred})^T C^{-1} (\mathbf{y}_{data} - \mathbf{y}_{pred})$


Easy reinterpretation of data for any model of interest.....

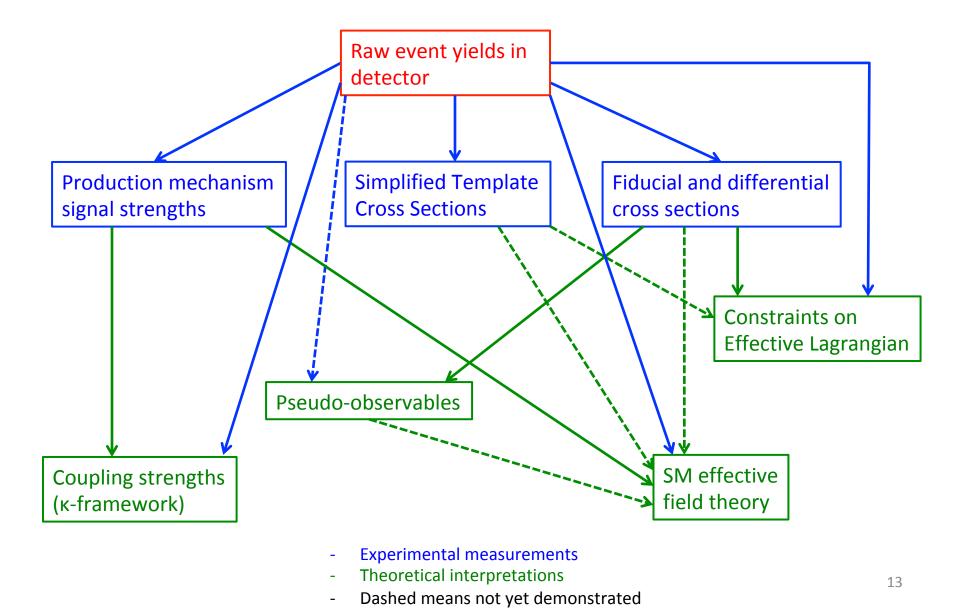

- Observables and covariance matrices published on HEPDATA.
- Rivet routine provided for fast comparison of any model to the data.

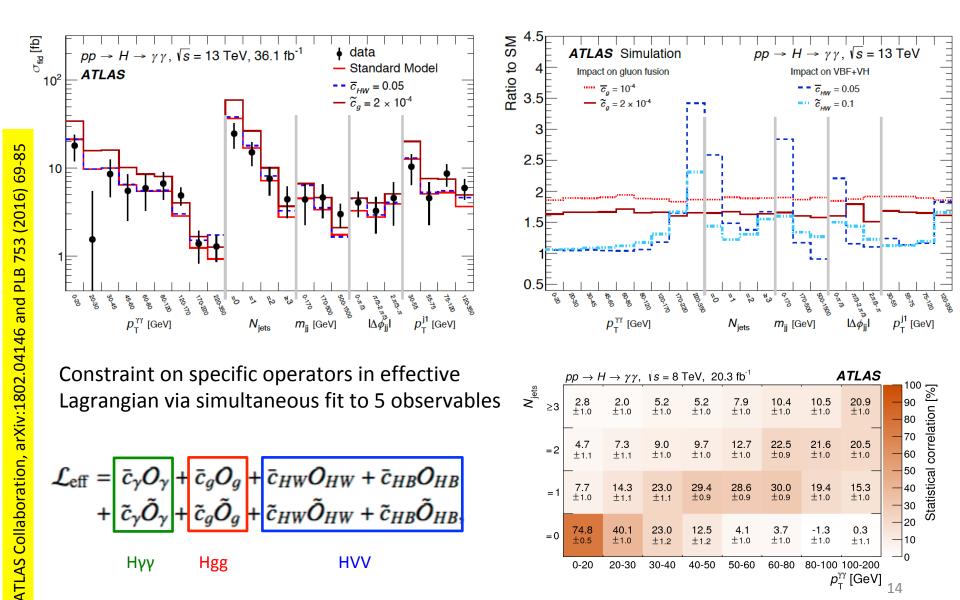
Easy reinterpretation of data for any model of interest.....


- Observables and covariance matrices published on HEPDATA.
- Rivet routine provided for fast comparison of any model to the data.



Easy reinterpretation of data for any model of interest.....

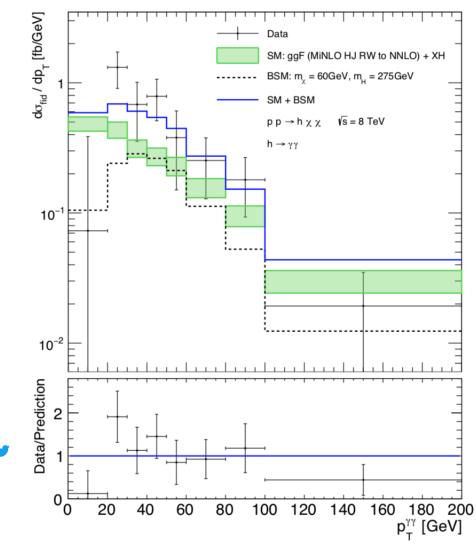

- Observables and covariance matrices published on HEPDATA.
- Rivet routine provided for fast comparison of any model to the data.



12


Different experimental approaches to probing the Higgs couplings

Constraints on effective Lagrangian operators



Constraints on effective Lagrangian terms in H->yy

- Proof of principle: set 2D constraints on CP-even and CP-odd couplings to gluons (left) and weak bosons (right)
- All data/correlations public: can repeat with favourite EFT basis or BSM physics model

Using Higgs data to search for resonantly-enhanced dark matter production

Sorry guys, but there is no evidence so far in the #LHC data to support the existence of a hypothetical #Madala #boson

3:14 PM - Sep 7, 2016

 \bigcirc 199 \bigcirc 235 people are talking about this

Summary

- LHC data cost billions to produce, <u>must</u> make sure it is as useful as possible:
 - <u>Ensure</u> longevity of the data
 - <u>Allow</u> future reinterpretations and combinations of multiple analyses
 - <u>Facilitate</u> model building
- Producing detector-corrected observables achieves all of those goals
 - Proof-of-principle for dark-matter searches published in EPJ C77 (2017) 765
 - HEPDATA: <u>https://www.hepdata.net/record/78366</u>
 - Rivet: <u>http://rivet.hepforge.org/analyses/ATLAS_2017_I1609448.html</u>
 - Existing measurements of Standard Model processes can be used as well