THEORY OF THE SCATTERING CROSS SECTION for DM direct detection

JURE ZUPAN U. OF CINCINNATI

1

based on work with F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368, 1707.06998;1707.06998;+ J. Brod, A. Gootjes-Dreesbach, M. Tammaro, JZ, 1710.10218 J. Brod, E. Stamou, JZ, 1801.04240

Dark Matter at the Dawn of Discovery?, Heidelberg, Apr 14 2018

MOTIVATION

- DM candidate at EW scale in many solutions to the hierarchy problem
 - the dominant interactions with the SM may be unconventional
- can parametrize our ignorance by using EFT for DM interactions

2

MOTIVATION

two immediate questions if signal of DM

comparing different DM direct detection experiments

 comparing direct detection with LHC and indirect detection

TOWER OF EFTS

EFT EXPANSION

• at which mass dimension to stop?

$$\mathcal{L}_{\rm EW} = \sum_{a,d} \frac{C_a^{(d)}}{\Lambda^{d-4}} Q_a^{(d)}$$

- at dimension 7 all chiral/Lorentz structures without derivatives
 - probably captures leading behaviour in most theories of DM
- already a large set of operators
 - above EW, if Dirac fermion DM in general EW multiplet
 - 8 dim-5 ops., 18 dim-6 ops., 100 dim-7 ops.
 - this not counting flavor multiplicities
 - at μ_{str} ~2 GeV smaller set
 - 2 dim-5 ops., 4 dim-6 ops., 22 dim-7 ops.

AIM

- the aim is to be able to
 - take any DM EFT up to dim 7 above EW scale J. Brod, A. Gootjes-Dreesbach, M. Tammaro, JZ, 1710.10218
 - consistently give the leading expression for cross section
 - includes renormalization group running
 - consistent counting, including ChPT F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368, 1707.06998
- part of this already available in a Mathematica
 & Python package DirectDM ^{F. Bishara, J. Brod, B. Grinstein, JZ, 1708.02678}

GOAL FOR TODAY

 matching at μ_{str}~2 GeV from relativistic theory to nuclear physics

$$\begin{split} & \mathcal{Q}_{1}^{(5)} = \frac{e}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}\chi) F_{\mu\nu} , \qquad \mathcal{Q}_{2}^{(5)} = \frac{e}{8\pi^{2}} (\bar{\chi}\sigma^{\mu\nu}i\gamma_{5}\chi) F_{\mu\nu} \\ & \mathcal{Q}_{1,q}^{(6)} = (\bar{\chi}\gamma_{\mu}\chi) (\bar{q}\gamma^{\mu}q), \qquad \mathcal{Q}_{2,q}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi) (\bar{q}\gamma^{\mu}q), \\ & \mathcal{Q}_{3,q}^{(6)} = (\bar{\chi}\gamma_{\mu}\chi) (\bar{q}\gamma^{\mu}\gamma_{5}q) , \qquad \mathcal{Q}_{4,q}^{(6)} = (\bar{\chi}\gamma_{\mu}\gamma_{5}\chi) (\bar{q}\gamma^{\mu}\gamma_{5}q) , \qquad \mathbf{quarks and gluons} \\ & \mathcal{Q}_{1}^{(7)} = \frac{\alpha_{s}}{12\pi} (\bar{\chi}\chi) G^{a\mu\nu} G^{a}_{\mu\nu} , \qquad \mathcal{Q}_{2}^{(7)} = \frac{\alpha_{s}}{12\pi} (\bar{\chi}i\gamma_{5}\chi) G^{a\mu\nu} G^{a}_{\mu\nu} , \\ & \mathcal{Q}_{3}^{(7)} = \frac{\alpha_{s}}{8\pi} (\bar{\chi}\chi) G^{a\mu\nu} \tilde{G}^{a}_{\mu\nu} , \qquad \mathcal{Q}_{4}^{(7)} = \frac{\alpha_{s}}{8\pi} (\bar{\chi}i\gamma_{5}\chi) G^{a\mu\nu} \tilde{G}^{a}_{\mu\nu} , \\ & \mathcal{Q}_{5,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}q) , \qquad \mathcal{Q}_{6,q}^{(7)} = m_{q} (\bar{\chi}i\gamma_{5}\chi) (\bar{q}\gamma_{5}q) . \\ & \mathcal{Q}_{7,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) & \mathcal{Q}_{8,q}^{(7)} = m_{q} (\bar{\chi}\gamma_{5}\chi) (\bar{q}\gamma_{5}q) . \\ & \mathcal{Q}_{7,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) & \mathcal{Q}_{8,q}^{(7)} = m_{q} (\bar{\chi}\gamma_{5}\chi) (\bar{q}\gamma_{5}q) . \\ & \mathcal{Q}_{7,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) & \mathcal{Q}_{8,q}^{(7)} = m_{q} (\bar{\chi}\gamma_{5}\chi) (\bar{q}\gamma_{5}q) . \\ & \mathcal{Q}_{7,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) & \mathcal{Q}_{8,q}^{(7)} = m_{q} (\bar{\chi}\gamma_{5}\chi) (\bar{q}\gamma_{5}q) . \\ & \mathcal{Q}_{7,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) & \mathcal{Q}_{8,q}^{(7)} = m_{q} (\bar{\chi}\gamma_{5}\chi) (\bar{q}\gamma_{5}q) . \\ & \mathcal{Q}_{7,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) & \mathcal{Q}_{8,q}^{(7)} = m_{q} (\bar{\chi}\gamma_{5}\chi) (\bar{q}\gamma_{5}q) . \\ & \mathcal{Q}_{7,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) & \mathcal{Q}_{8,q}^{(7)} = m_{q} (\bar{\chi}\gamma_{5}\chi) (\bar{q}\gamma_{5}q) . \\ & \mathcal{Q}_{7,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) & \mathcal{Q}_{8,q}^{(7)} = m_{q} (\bar{\chi}\gamma_{5}\chi) (\bar{q}\gamma_{5}q) . \\ & \mathcal{Q}_{7,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) & \mathcal{Q}_{8,q}^{(7)} = m_{q} (\bar{\chi}\gamma_{5}\chi) (\bar{q}\gamma_{5}q) . \\ & \mathcal{Q}_{7,q}^{(7)} = m_{q} (\bar{\chi}\chi) (\bar{q}i\gamma_{5}q) & \mathcal{Q}_{8,q}^{(7)} & \mathcal{Q}_$$

DIRECT DM DETECTION KINEMATICS

- WIMPS form DM halo
 - typical velocity $v \sim 10^{-3}$
- scatters on target nuclei $\chi N \rightarrow \chi N$
 - typical energy deposit

$$E_{d} = 2\frac{\mu_{\chi}^{2}}{M_{A}}v^{2} \sim 2\text{keV}\Big(\frac{120GeV}{M_{A}}\Big)\Big(\frac{\mu_{\chi}}{10\text{GeV}}\Big)^{2}\Big(\frac{v}{10^{-3}}\Big)^{2}$$

typical momentum exchange

 $q_{\rm max} \sim 200$ MeV.

9

• this allows for treatment with ChPT, expansion in q/Λ_{ChEFT}

J. Zupan Theory of scattering...

GENERAL LESSONS

10

- chirally leading contributions due to DM scattering on a single nucleon current
 - DM coupling to four-nucleon ops. always *O*(*q*³) suppressed
 - long distance contribs. only
 O(q) suppr. for scalar couplings
- not all NR ops. generated
- switching on just one NR oper. at a time not justified

J. Zupan Theory of scattering...

ALL OPERATORS?

- do we need all the operators? F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368; 1707.06998
 - 15 operators with up to 2 derivatives
 - general dim 5 and 6 EFT above EW scale requires at LO

$\mathcal{O}_1^N = \mathbb{1}_\chi \mathbb{1}_N,$	$\mathcal{O}_2^N = ig(v_ot)^2 \mathbb{1}_\chi \mathbb{1}_N , \qquad \qquad \mathcal{O}_{2b}^N = ig(ec{S}_N \cdot ec{v}_ot) ig(ec{S}_\chi \cdot ec{v}_ot) .$
$\mathcal{O}_3^N = \mathbb{1}_\chi ec{S}_N \cdot \left(ec{v}_\perp imes rac{iec{q}}{m_N} ight),$	$\mathcal{O}_4^N = ec{S}_\chi \cdot ec{S}_N ,$
$\mathcal{O}_5^N = ec{S}_\chi \cdot \left(ec{v}_\perp imes rac{iec{q}}{m_N} ight) \mathbb{1}_N,$	$\mathcal{O}_6^N = \left(ec{S}_\chi \cdot rac{ec{q}}{m_N} ight) \left(ec{S}_N \cdot rac{ec{q}}{m_N} ight),$
$\mathcal{O}_7^N = \mathbb{1}_\chi \left(ec{S}_N \cdot ec{v}_\perp ight),$	$\mathcal{O}_8^N = ig(ec{S}_\chi \cdot ec{v}_ot) \mathbb{1}_N ,$
$\mathcal{O}_9^N = ec{S}_\chi \cdot \left(rac{iec{q}}{m_N} imes ec{S}_N ight),$	${\cal O}_{10}^N = - \mathbb{1}_\chi \left(ec{S}_N \cdot rac{i ec{q}}{m_N} ight),$
$\mathcal{O}_{11}^N = - \Bigl(ec{S}_\chi \cdot rac{iec{q}}{m_N} \Bigr) \mathbb{1}_N ,$	$\mathcal{O}_{12}^N = ec{S}_\chi \cdot \left(ec{S}_N imes ec{v}_\perp ight),$
$\mathcal{O}_{13}^N = - \left(ec{S}_\chi \cdot ec{v}_\perp ight) \left(ec{S}_N \cdot rac{iec{q}}{m_N} ight),$	$\mathcal{O}_{14}^N = - \Big(ec{S}_\chi \cdot rac{iec{q}}{m_N}\Big) \left(ec{S}_N \cdot ec{v}_ot \Big),$

• do we need the $O(q^2)$ terms? Can we stop at $O(q^2)$?

J. Zupan Theory of scattering...

LO DIAGRAMS

quark and gluon currents hadronize as

COMPARISON

F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368; 1707.06998 see also, e.g., Cirelli, Del Nobile, Panci, 1307.5955; Hill, Solon, 1409.8290;

 for most NR operators the results agree with previous literature

$$\begin{split} \mathcal{O}_{1}^{N} &= \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{3}^{N} &= \mathbb{1}_{\chi} \vec{S}_{N} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}} \right), \\ \mathcal{O}_{5}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{iq}{m_{N}} \right) \mathbb{1}_{N}, \\ \mathcal{O}_{7}^{N} &= \mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \vec{v}_{\perp} \right), \\ \mathcal{O}_{9}^{N} &= \vec{S}_{\chi} \cdot \left(\frac{i\vec{q}}{m_{N}} \times \vec{S}_{N} \right), \\ \mathcal{O}_{11}^{N} &= - \left(\vec{S}_{\chi} \cdot \frac{i\vec{q}}{m_{N}} \right) \mathbb{1}_{N}, \\ \end{split}$$

J. Zupan Theory of scattering...

• what is new?

COMPARISON

see also Hoferichter, Klos, and Schwenk, 1503.04811

- what is new?
 - re-amphasising the importance of (pion) pole enhanced contribs.

$$\begin{split} \mathcal{O}_{1}^{N} &= \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{3}^{N} &= \mathbb{1}_{\chi} \vec{S}_{N} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}} \right), \\ \mathcal{O}_{5}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}} \right) \mathbb{1}_{N}, \\ \mathcal{O}_{7}^{N} &= \mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \vec{v}_{\perp} \right), \\ \mathcal{O}_{9}^{N} &= \vec{S}_{\chi} \cdot \left(\frac{i\vec{q}}{m_{N}} \times \vec{S}_{N} \right), \\ \mathcal{O}_{11}^{N} &= - \left(\vec{S}_{\chi} \cdot \frac{i\vec{q}}{m_{N}} \right) \mathbb{1}_{N}, \\ \end{split}$$

J. Zupan Theory of scattering...

PION POLES

the pion poles important for

J. Zupan Theory of scattering...

COMPARISON

- what is new?
 - consistent chiral counting

J. Zupan Theory of scattering...

J. Zupan Theory of scattering...

J. Zupan Theory of scattering...

AXIAL-AXIAL

• some further examples

• axial-axial interaction: $C_{4u} = -C_{4d}$

VECTOR-AXIAL

• vector-axial interaction: $C_{3u}=C_{3d}=C_{3s}=1$

ENERGY DEPENDENCE

• The differential event rate as a function of the momentum transfer as an example: $Q_4^{(7)}$

PHOTON POLES

• due to photon poles also need $O(q^2)$ ops

PHOTON POLES - XENON

PHOTON POLES - FLUORINE

magnetic dipole interaction

$$\mathcal{Q}_1^{(5)} = \frac{e}{8\pi^2} (\bar{\chi} \sigma^{\mu\nu} \chi) F_{\mu\nu}$$

both SD operators important

NLO - SINGLE CURRENTS

F. Bishara, J. Brod, B. Grinstein, JZ, 1611.00368; 1707.06998

- for many operators two-nucleon currents highly suppressed
- are O(q²) corrections to single currents ever important?
 - part of it captured by form factors for LO operators
 - but also new operators generated
- example: tensor-tensor operator

SCALAR DARK MATTER

- analysis for scalar DM easier
- no DM spin \Rightarrow no cancellations in products of $J_{\chi}x$ (leading chiral J_q)
- for P_q and A_q currents the contribs. are enhanced by pion poles

$$\begin{aligned} \mathcal{Q}_{1,q}^{(6)} &= \left(\varphi^* i \overleftrightarrow{\partial}_{\mu} \varphi\right) (\bar{q} \gamma^{\mu} q), \qquad \mathcal{Q}_{2,q}^{(6)} &= \left(\varphi^* i \overleftrightarrow{\partial}_{\mu} \varphi\right) (\bar{q} \gamma^{\mu} \gamma_5 q), \\ \mathcal{Q}_{3,q}^{(6)} &= m_q(\varphi^* \varphi) (\bar{q} q), \qquad \mathcal{Q}_{4,q}^{(6)} &= m_q(\varphi^* \varphi) (\bar{q} i \gamma_5 q), \\ \mathcal{Q}_{5}^{(6)} &= \frac{\alpha_s}{12\pi} (\varphi^* \varphi) G^{a\mu\nu} G^a_{\mu\nu}, \qquad \mathcal{Q}_{6}^{(6)} &= \frac{\alpha_s}{8\pi} (\varphi^* \varphi) G^{a\mu\nu} \widetilde{G}^a_{\mu\nu}. \end{aligned}$$

$$\begin{aligned} \mathbf{p}_{7}^{(6)} &= i \frac{e}{8\pi^2} (\partial_{\mu} \varphi^* \partial_{\nu} \varphi) F^{\mu\nu}, \\ \mathbf{p}_{7}^{(6)} &= i \frac{e}{8\pi^2} (\partial_{\mu} \varphi^* \partial_{\nu} \varphi) F^{\mu\nu}, \end{aligned}$$

$$\begin{aligned} \mathbf{p}_{1,p}^{(0)} &= \left(\varphi^*_v \varphi_v\right) (\bar{p}_v p_v), \\ \mathcal{Q}_{1,p}^{(1)} &= \left(\varphi^*_v \varphi_v\right) (\bar{p}_v i q \cdot S_N p_v), \\ \mathcal{Q}_{2,p}^{(1)} &= m_N (\varphi^*_v \varphi_v) (\bar{p}_v v_\perp \cdot S_N p_v), \end{aligned}$$

$$I. Zupan Theory of scattering... 25 Dark Matter at the ...?, Heidelberg, Apr 14 2018 \end{aligned}$$

CONCLUSIONS

- presented LO + partial NLO matching from DM interacting with gluons and quarks to nuclear physics
- not always consistent to take single NR operators
- one should use EFT with gluons and quarks to consistently compare direct detection experiments

BACKUP SLIDES

HIGHER DIM OPS?

- 0-th order question:
 - since renormalizable EW interactions, do we care about higher dim ops?
- if tree level Z exchange allowed, ruled out by direct detection
- this leaves 1-loop and 2-loop as leading
- higher dim ops can dominate

Heavy Baryon ChPT

- assumption in the formalism for nuclear response functions
 - DM scatters on single nucleon
- how justified is this assumption?
 - how large are contributions from DM coupling to four-nucleon operators
- can be addressed using
 - Heavy Baryon Chiral Perturbation Theory (HBChPT)
 - ChEFT of nuclear forces
 - proton and neutron treated as heavy, $m_{p,n} \gg q \sim 200 \text{MeV}$

HBChPT counting

Weinberg, NPB363, 3 (1991); Kaplan, Savage, Wise, nucl-th/9605002; Cirigliano, Graesser, Ovanesyan, 1205.2695

- HBChPT allows for consistent counting of "A-nucleon potentials"
 - expansion in $q/\Lambda_{\text{ChEFT}} \sim q/m_{p,n} \sim 0.3$
- A-nucleon irreducible amplitudes scale as $\sim q^{\nu}$

• gives scaling for LO and NLO potentials

• gives scaling for LO and NLO potentials

A COMPLICATION

- the external currents are due to nonrelativistic fermions (WIMPs)
- need to match on Heavy DM Effective Theory (HDMET)
 - expansion in $1/m_{\chi}$
 - similar to HQET for heavy quarks
 - matching trivial if one works to tree level
- after contracting with hadronic currents leading terms in chiral counting vanish for $J^V_{\gamma} \cdot \tilde{J}^A_{a}, J^V_{\gamma} \cdot \tilde{J}^A_{a}$
- the J_{χ}^{P} starts at $1/m_{\chi}$

 $J_{\nu}^{V} \cdot \tilde{J}_{a}^{V} \sim J_{\nu}^{S} \tilde{J}^{G} \sim (\bar{\chi}_{v} \chi_{v}) (\bar{N}N),$ $J^A_{\nu} \cdot \tilde{J}^A_{\sigma} \sim (\bar{\chi}_v S_{\chi} \chi_v) \cdot (\bar{N} S_N N),$ $J^A_{\nu} \cdot \tilde{J}^V_a \sim J^P_{\nu} \tilde{J}^G \sim (\bar{\chi}_v \partial \cdot S_{\chi} \chi_v) (\bar{N}N), \qquad J^V_{\nu} \cdot \tilde{J}^A_a \sim J^S_{\chi} \tilde{J}^\theta \sim (\bar{\chi}_v \chi_v) (\bar{N} \partial \cdot S_N N),$ $|J_{\gamma}^{S} \tilde{J}_{q}^{S} \sim m_{q}(\bar{\chi}_{v} \chi_{v}) (\bar{N}N), \quad J_{\gamma}^{S} \tilde{J}_{q}^{P} \sim m_{q}(\bar{\chi}_{v} \chi_{v}) (\bar{N}N)\pi, \quad J_{\gamma}^{P} \tilde{J}^{\theta} \sim (\bar{\chi}_{v} \partial \cdot S_{\chi} \chi_{v}) (\bar{N} \partial \cdot S_{N}N),$ $J^P_{\chi} \tilde{J}^S_q \sim (\bar{\chi}_v \partial \cdot S_{\chi} \chi_v) m_q(\bar{N}N),$ $J^P_{\chi} \tilde{J}^P_{q} \sim (\bar{\chi}_v \partial \cdot S_{\chi} \chi_v) m_q (\bar{N}N) \pi,$ J. Zupan meory of scattering...

Matter at the, Herdenberg, Apr 14 2010

NUCLEAR RESPONSE

32

- for nuclear response we use the formalism of Anand, Fitzpatrick, Haxton
- match onto ops. with NR nucleons
- only this subset of NR operators is generated

 $ec{v}_T^\perp = ec{v} - ec{q}/(2\mu_{\chi A}),$

• xsec prop. to

Fitzpatrick, Haxton
• match onto ops.
with NR nucleons
• only this subset of
NR operators is
generated
• xsec prop. to

$$\vec{v}_{T}^{\perp} = \vec{v} - \vec{q}/(2\mu_{\chi A}),$$

$$\vec{v}_{T}^{\perp} = (4m_{\chi}m_{N})^{2} [c_{\text{NR},1}^{\tau}c_{\text{NR},1}^{\tau} + \frac{1}{4} (\frac{\vec{q}^{2}}{m_{\chi}^{2}} \vec{v}_{\text{T}}^{-2} c_{\text{NR},8}^{\tau}c_{\text{K},1}^{\tau})],$$

$$\vec{v}_{T}^{\perp} = (4m_{\chi}m_{N})^{2} [c_{\text{NR},1}^{\tau}c_{\text{NR},1}^{\tau} + \frac{1}{4} (\frac{\vec{q}^{2}}{m_{\chi}^{2}} \vec{v}_{\text{T}}^{-2} c_{\text{NR},8}^{\tau}c_{\text{K},1}^{\tau})],$$

$$\vec{v}_{T}^{\perp} = (4m_{\chi}m_{N})^{2} [c_{\text{NR},1}^{\tau}c_{\text{NR},1}^{\tau} + \frac{\vec{q}^{2}}{m_{\chi}^{2}} (c_{\text{NR},1}^{\tau}(c_{\text{NR},1}^{\tau})]],$$

$$\vec{v}_{T}^{\perp} = (4m_{\chi}m_{N})^{2} [c_{\text{NR},1}^{\tau}c_{\text{NR},1}^{\tau} + \frac{\vec{q}^{2}}{m_{\chi}^{2}} (c_{\text{NR},1}^{\tau}c_{\text{NR},1}^{\tau})],$$

$$\vec{v}_{T}^{\perp} = (4m_{\chi}m_{N})^{2} [c_{\text{NR},1}^{\tau}c_{\text{NR},1}^{\tau}],$$

$$\vec{v}_{T}^{\perp} = (4m_{\chi}m_{N})^{2} [c_{\text{NR},1}^{\tau}c_{\text{NR},1}^{$$

NUCLEAR RESPONSE FUNCTIONS

- $W_M(q)$: from vector operator
 - in $q \rightarrow 0$ limit counts nucleons \Rightarrow spin-indep. (coherent) scattering
- $W_{\Sigma''}$ and $W_{\Sigma'}$: longit. and transverse axial ops.
 - related to conventional spin form factors

$$S_{00,11} = \frac{1}{4\pi} \sum_{\text{spins}} |\langle \vec{S}_p \pm \vec{S}_n \rangle|^2,$$
$$S_{01} = \frac{1}{2\pi} \sum_{\text{spins}} |\langle \vec{S}_p \rangle|^2 - |\langle \vec{S}_n \rangle|^2,$$

• measure the nucleon spin content of the nucleus

 $W_{\Sigma'}^{\tau\tau'} + W_{\Sigma''}^{\tau\tau'} = S_{\tau\tau'}, \quad \tau, \tau' = 0, 1.$

- W_{Δ} : vector transverse magnetic operators
 - nucleon angular momentum content of the nucleus
- (very) rough scaling:

$$W_M \sim \mathcal{O}(A^2), \qquad W_{\Sigma'}, W_{\Sigma''}, W_{\Delta}, W_{\Delta\Sigma'} \sim \mathcal{O}(1)$$

- in general three more response functions
 - these not generated to the order we work
 - J. Zupan Theory of scattering...

- 33
- Dark Matter at the ...?, Heidelberg, Apr 14 2018

PSEUDOSCALAR-PSEUDOSCALAR

- PS-PS operator $C_{8u} = -C_{8d} = -C_{8s}$
- $\mathcal{Q}_{8,q}^{(7)} = m_q(\bar{\chi}\gamma_5\chi)(\bar{q}\gamma_5q)$
 - compare full pion pole with $q \rightarrow 0$ limit

CP-ODD GLUONIC OPERATOR

PSxCP-odd gluonic operator

10

1

Full q^2 dep.

No q^2 dep. in poles

$${}^{(7)}_4 = \frac{\alpha_s}{8\pi} (\bar{\chi} i \gamma_5 \chi) G^{a\mu\nu} \tilde{G}^a_{\mu\nu}$$

$$+\left(\frac{1}{2}-\frac{1}{2}\right)\frac{(\Delta u-\Delta d)\vec{q}^2}{2}\left(\vec{S}_N\cdot\vec{q}\right)\left(\vec{S}_\gamma\cdot\vec{q}\right)$$

ALL OPERATORS?

- do we need all the operators?
 - general dim 5 and 6 EFT require for LO description:

$$\begin{split} \mathcal{O}_{1}^{N} &= \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{3}^{N} &= \mathbb{1}_{\chi} \vec{S}_{N} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}} \right), \\ \mathcal{O}_{5}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{v}_{\perp} \times \frac{i\vec{q}}{m_{N}} \right) \mathbb{1}_{N}, \\ \mathcal{O}_{7}^{N} &= \mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \vec{v}_{\perp} \right), \\ \mathcal{O}_{9}^{N} &= \vec{S}_{\chi} \cdot \left(\frac{i\vec{q}}{m_{N}} \times \vec{S}_{N} \right), \\ \mathcal{O}_{11}^{N} &= -\left(\vec{S}_{\chi} \cdot \frac{i\vec{q}}{m_{N}} \right) \mathbb{1}_{N}, \end{split} \qquad \begin{aligned} \mathcal{O}_{2}^{N} &= \left(v_{\perp} \right)^{2} \mathbb{1}_{\chi} \mathbb{1}_{N}, \\ \mathcal{O}_{4}^{N} &= \vec{S}_{\chi} \cdot \vec{S}_{N}, \\ \mathcal{O}_{6}^{N} &= \left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \right) \left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \right), \\ \mathcal{O}_{6}^{N} &= \left(\vec{S}_{\chi} \cdot \vec{v}_{\perp} \right) \mathbb{1}_{N}, \\ \mathcal{O}_{10}^{N} &= -\mathbb{1}_{\chi} \left(\vec{S}_{N} \cdot \frac{i\vec{q}}{m_{N}} \right), \\ \mathcal{O}_{12}^{N} &= \vec{S}_{\chi} \cdot \left(\vec{S}_{N} \times \vec{v}_{\perp} \right), \end{aligned}$$

- using the rough scalings $A \sim 100$, $q/m_N \sim 0.1$, $v_T \sim 10^{-3}$
- allow for fine-tuning to get VxA, AxV structures
 - then 2 derivative ops. can be LO
- due to pion poles 2 derivative ops. can be of LO size
 J. Zupan Theory of scattering...
 36 Dark Matter at the ...?, Heidelberg, Apr 14 2018

- SD always scales as $\sim q^{\nu_{\rm LO}+3}$
- only for $J_{\chi}^{A} \cdot \tilde{J}_{q}^{V}, J_{\chi}^{S} \tilde{J}_{q}^{S}, J_{\chi}^{P} \tilde{J}_{q}^{S}$ and $J_{\chi}^{V} \cdot \tilde{J}_{q}^{A}$ LD parametrically larger, $\sim q^{\nu_{\text{LO}}+1} \sim q^{\nu_{\text{LO}+2}}$
- we work to LO, results have relative $O(q/\Lambda_{ChEFT}) \sim 30\%$ accuracy
 - at this order: DM couples only to single nucleon currents
- at O(q) LD DM interaction with two nucleons, e.g., for $\bar{q}q$
 - calculable using HBChPT, expected size $\sim (q/\Lambda_{ChEFT}) \sim 30\%$
- short distance DM-2nucleon interaction at $O(q^3)$ (size: ~few%)

J. Zupan Theory of scattering...

37