Impact of safety related requirements and evolutions on LASS and LACS

By Rui NUNES
In the name of the Access Team
Current major issues

1. MAD
2. EIS-f bypass (in/out of chain)
3. Resectorisation needs
 - Access vs Ventilation
 - “Overpressure” doors
 - Maintenance
4. New Interlocks
5. Moving equipment due to R2E
6. New access points
7. Other Technical Improvements
LHC Access in numbers

- 35 Access points
- 44 PADs – 30 MADs
- 116 Sector doors
- 81 End-of-Zone doors
- 22 interlocked + 24 non-interlocked ventilation doors

- EIS-f/m interlocks (interfaces)
 - Magnets (6 Power converters & respective Cells)
 - Beam stoppers (2 TED)
 - Access Safety blocks (2 valves)
 - Electron stoppers (4 valves)
 - RF interlock
 - L BDS – LHC Beam dump system
 - BIS – Beam interlock System
 - SPS Access chains 3 & 5
LACS and LASS

- **LHC Access Control System (LACS)**
 - Authorise and authenticate the people who enter
 - Authorise = have the credentials
 - Valid Contract, Dosimeter, training, EDH, ADI, etc...
 - Authenticate = you are who you say you are
 - Biometrics

- **LHC Access Safety System (LASS)**
 - People => no beam
 - Beam => no people
MAD - Material Access Device

Guarantee that no person can enter through the MAD involuntarily or by mistake

Particularly in RESTRICTED MODE + PATROL:

Current solution is considered insufficient

- **Current approach**
 - fine Movement detection
- **but**
 - Flashing lights,
 - Snow melting & water
 - Light changes, etc...

- **Current difficulties include**
 - too lax detection
 - False acceptance risk
 - ➔ potential Safety problem
 - too strict detection
 - False rejection high
 - ➔ Availability problem
MAD with people

- Normal people trying to stay still
- Easily detectable target
- However we are now with increased sensitivity in order to detect even the finest movement
MAD extremes

![MAD Attempts vs Rejects](image)

Images from F. Valentini
MAD - Material Access Device

- Design modification

- Actions foreseen
 1. Make detection “failsafe”
 2. IR cells as complement
 3. Remote control
 4. 2nd Redundant system of diverse technology (e.g. via thermal imaging)
EIS-f/m bypass

- 53 bypass action since June 2008
- 4 bypass actions in Jan 2010
- Each request is generally
 - Urgent
 - Moderately complex
 - 6-20 Cabled straps to execute each time
- If mistakes are made
 - Access forbidden in LHC
 - Evacuation sirens possible
- Status of EIS bypass available only in documentation

![EIS bypass in time](image)
EIS-f/m bypass

- Technical improvement

- Solution foreseen
 - Pre-cabled electrical relay bypass possibility on main EIS-f/m signals
 - On-line signalisation in the CCC LASS Console
 - System built-in bypass procedure to give the DSO full control
 - e.g. interlocked keys, etc...
Access Safety vs. Ventilation

• **Requirement**
 ▫ Align the Access sectorisation with the ventilation sectorisation
 ▫ This is no longer the case, mostly in the UAs, but maybe also some other areas

• **Consequence**
 ▫ If not done access to service areas shall be more limited than expected

• Let’s take the example for LHC2 – UA27
Access Safety vs. Ventilation

1. Access Point (PAD/MAD)

2. Cable passages not air tight

3. New “overpressure” door

4. Consequence = Not possible to access US-UA before long air-decay time
Access Safety vs. Ventilation - Option 1

Option 1. Make cable passages air-tight

Implications for cables to be studied. Cooling, modifs, etc..
Access Safety vs. Ventilation - Option 2

Option 2: Move or add access point next to door

Major review of access control & safety & interlocks
Access Safety vs. Ventilation

- This is not a new requirement
 - Non-air tightness has been known for a while
 - Must decide on course of action
 - Option 1 – make air-tight
 - Option 2 – modify Access
 - Option 3 – do nothing

- Study is necessary in 2010

- Design modification
“Overpressure” doors integration

• **Requirement**
 ▫ Acquire the status of new doors in a more reliable fashion
 ▫ related to previous issue on sectorisation and containment of a MCI

• **Consequence**
 ▫ Not technically complex
 ▫ Requires exhaustive non-regression testing
 ▫ ...New interlocks?

• **Design modification/Scope increase**
Sectorisation for Maintenance

- **Requirement**
 - Allow for maintenance in external envelope during run periods (PM shafts)
 - Most solicited interlocked access points

- **Consequence**
 - Move the external envelope inwards
 - Add additional door like in SPS
 - Design modification
In 5 ½ month period
Aug 2009 – Jan 2010
New interlocks - Powering Tests

• Requirement
 ▫ Cover the risk of MCI during Phase 2 powering tests
 ▫ Interlock PCs in case of intrusion in (another) envelope

• Consequence
 ▫ Risk analysis necessary
 ▫ Can be extremely complex depending on the number of interlock points
 ▫ May require Power Converter modifications to provide safety interlocks
 ▫ May require re-sectorisation as before

• Scope increase/new risk
New interlock - fresh air supply

- **Requirement**
 - Stop people from entering LHC if the ventilation conditions are not OK

- **Consequence**
 - More complicated on the ventilation side than on the Access side.
 - Difficult to obtain this information
 - Technically not complex to implement for LACS

- **Scope increase**
R2E - Moving equipment

• Requirement
 ▫ Remove critical equipment from areas that are subject to R2E effects
 ▫ Areas concerned are
 1. UJ56
 2. UJ76.. ?
 3. UJ33, ?

• Consequence
 ▫ Moving equipment requires re-cabling and finding new locations (integration)

• Design modification
New access points (non-interlocked)

- **Requirement**
 - PM54 – CMS
 - Finish installation according to design so we can:
 - count underground occupants
 - Homogenise supervision & maintenance

- **Consequence**
 - Not technically complex
 - Civil engineering integration for new location requested by CMS
 - Can be done during beam

- **Technical Improvement**
New access points (interlocked)

- **Requirements**
 - TZ32 – CLIC alignment use
 - New PAD+MAD in US32
 - PZ65 to be confirmed
 - when PM65 unavailable

- **Consequence**
 - Moving of existing end-of-zone doors & new interlocked zone
 - Re-sectorization implications
 - Re-cabling from PZ33

- Design modification
Other technical improvements

- **PAD programme correction**
 - To avoid losing patrols on passage
- **Intercom improvement**
 - Noise reasons next to compressor areas
- **Video improvement**
 - Technological change to avoid freezing & improve fluidity
- **IHM improvement**
 - Capability of treating multiple access points simultaneously
- **Improve LACS-LASS interfaces**
 - Application of access modes
- **Improve interface with ATLAS SSA**
S1 include in list sharepoint as new item
 Sedas, 1/19/2010

S2 include in list sharepoint as new item
 Sedas, 1/19/2010
Thank you for your attention
Scale of graphs - example

<table>
<thead>
<tr>
<th>Scale</th>
<th>Safety</th>
<th>Scale Cost (CHF)</th>
<th>Delay</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>no improvement</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>minor improvement</td>
<td>1 > 1 000</td>
<td>6 months</td>
<td>simple SW or HW</td>
</tr>
<tr>
<td>2</td>
<td>medium improvement</td>
<td>2 > 10 000</td>
<td>1 year</td>
<td>SW or HW</td>
</tr>
<tr>
<td>3</td>
<td>major improvement</td>
<td>3 > 100 000</td>
<td>2 years</td>
<td>Complex SW or HW</td>
</tr>
<tr>
<td>4</td>
<td>New safety function</td>
<td>4 > 1 000 000</td>
<td>3 years</td>
<td>Re-Design issue</td>
</tr>
<tr>
<td>5</td>
<td>New risk covered</td>
<td>5 > 10 000 000</td>
<td>> 3 years</td>
<td>New concept</td>
</tr>
</tbody>
</table>

Other criteria: qualitative scale of 0-5
- Reliability
- Availability
- Maintainability
- Usability