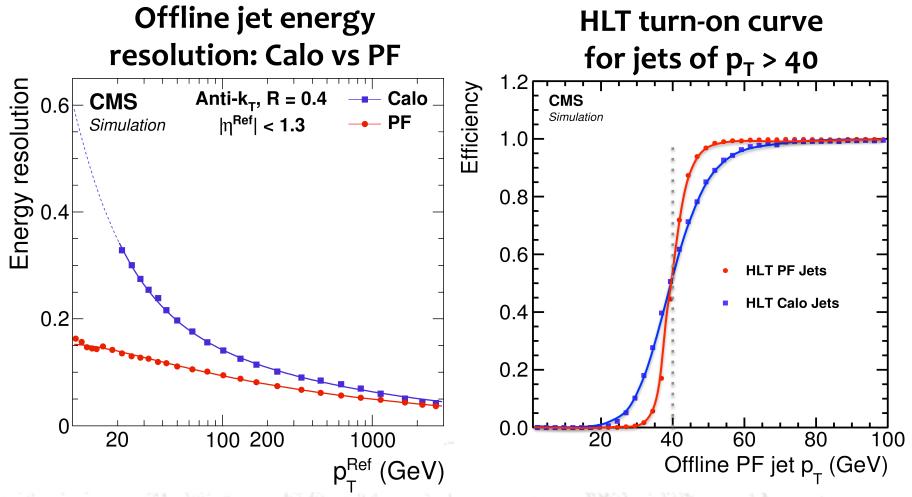

Particle Flow in the Level 1 Trigger for CMS Phase II

Giovanni Petrucciani (CERN) on the behalf of the CMS Collaboration

Particle Flow reconstruction

Goal: reconstruct and identify individually all particles produced in the CMS detector

Why Particle Flow?


Several use cases where benefits from PF were proven in offline or HLTrigger reconstruction:

- Jet performance, especially at low p_T's relevant for e.g. top quark physics, ttH, compressed supersymmetry, ..
- τ_h identification
- **p**_T^{miss} performance
- as input to pileup mitigation strategies, e.g. per-particle pileup identification (PUPPI)

PF Jet performance: Offline, HLT

JINST 12 (2017) P10003 (lines added by hand in right plot for readability)]

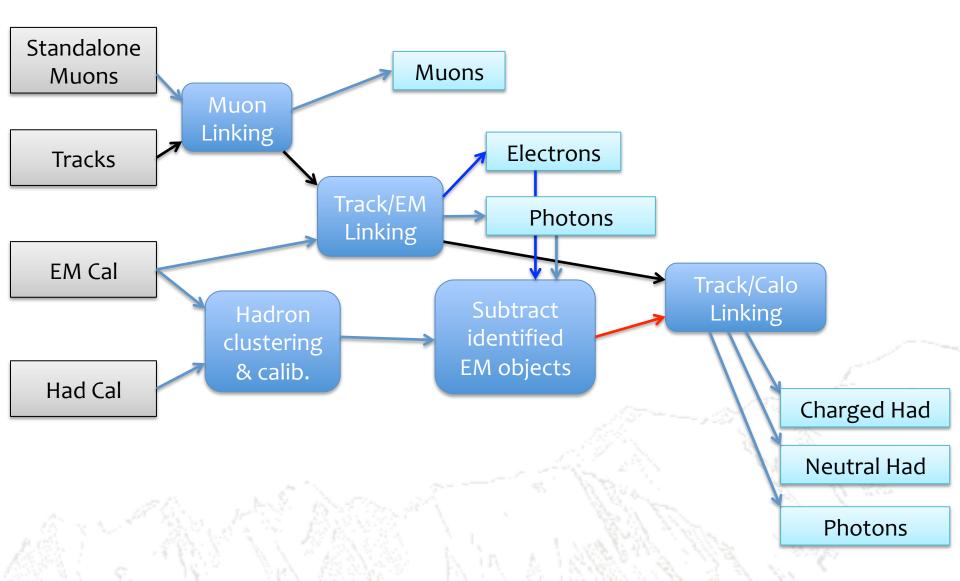
Requirements for PF algo

- 1. efficient track reconstruction to identify and measure charged hadrons
 - Available at the L1 for the first time with the Phase II upgrade (for $p_T > 2$ GeV, $|\eta| < 2.4$)
- 2. finely segmented calorimeters, to separate individual particles
 - Phase II upgrade: crystal-level Ecal info at L1, and new high granularity Endcap Calorimeter.
- 3. enough processing resources

Constraints

- L1 receives input events at rate of 40 MHz, must output events after a fixed latency < 1µs
 - For comparison, the current PF @ H L Trigger, runs at O(20) kHz, taking O(100) ms/event
- FPGA architecture very different from a CPU
 - large number of processing components that can all work in parallel, but with much less flexibility
- Developed PF@L1 from first principles rather than adapting the very complex offline PF algo
 – Today presenting first prototype algorithm

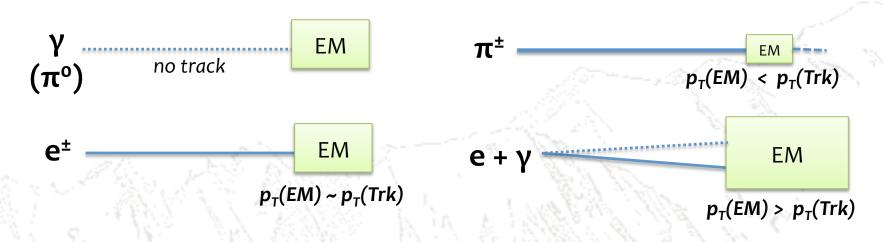
L1 PF Inputs


- The current prototype L1 PF algorithm uses:
 - tracks from the L1 track trigger
 - clusters from the calorimeter triggers:
 - fine granularity clusters for photons & electrons
 - coarser granularity clusters for hadrons
 - muons from the muon system
- The algorithm for now is only relying on basic information on the inputs (position, energy, ...)

 Improvements possible in the future exploiting more inputs, e.g. cluster timing, shower shapes, ...

L1 PF Algorithm chart

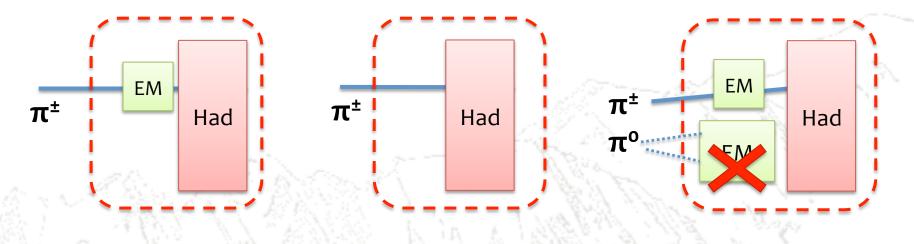
L1 PF Algo: muons


- 1. Link tracker tracks to muon detector tracks
 - for each muon reconstructed in the muon
 subdetector, look for the best matching track, in
 the inner tracker, in direction and momentum
 - call that track a muon
 - mask it out from further PF algorithm steps

L1PF Algo: e^{\pm} , γ

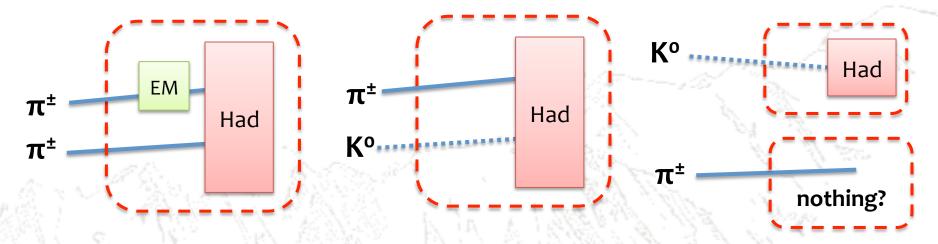
- Select narrow clusters in the EM calorimeter
- Link each track to the nearest EM cluster
 - require tight matching in position, exploiting the fine granularity of the EM calorimeters
- Compare p_T(EM) vs p_T(Trk)
 - Define photons and electrons
 - For pion-like tracks, keep the track for further PF steps, and discard the EM cluster

L1 PF Algo: hadrons


- 1. Combine EM and Had calorimeter to make hadron clusters (possibly already in the calo trigger)
 - Apply energy calibration as function of p_T, η and EM/ (EM+Had), derived for pions
 - Remove EM clusters from photons and electrons identified by the PF algorithm
- 2. Link each tracks to the "best" cluster
 - look also at the matching in p_T during linking
 - forbid high p_T tracks to match to low p_T clusters (and then discard unlinked high p_T tracks: ~ fakes)
- 3. Compare calo p_T to sum of linked track p_T 's
 - Promote significant energy excess to neutral particles

L1 PF Algo: hadrons / 1

- 1. Combine EM and Had calorimeter to make hadron clusters (possibly already in the calo trigger)
 - Apply energy calibration as function of p_T, η and EM/ (EM+Had), derived for pions
- 2. Remove energy from EM clusters of photons and electrons identified by the PF algorithm

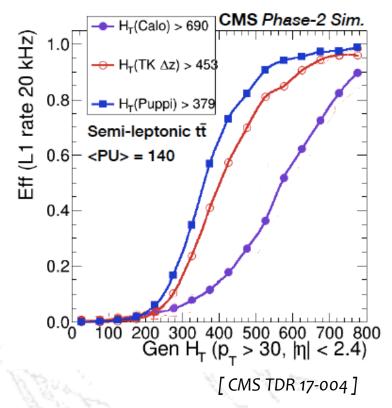


L1 PF Algo: hadrons / 2

- 3. Link each tracks to the "best" cluster
 - look also at the matching in p_T during linking
 - forbid high p_T tracks to match to low p_T clusters (and then discard unlinked high p_T tracks: ~ fakes)
- 4. Compare calo p_T to sum of linked track p_T 's
 - Promote significant energy excess to neutral particles

FPGA Implementation

- Rely on Vivado High Level Synthesis framework to compile C++ code into HDL and firmware
 - C++ code optimized to yield an efficient firmware
 - output of optimized code validated for bitwise identity with original reference version
 - firmware deployed and validated on spares of existing CMS Phase I L1T boards (Virtex-7 based)
- Extrapolate from Virtex-7 to newer FPGAs proposed for the Phase II upgrade

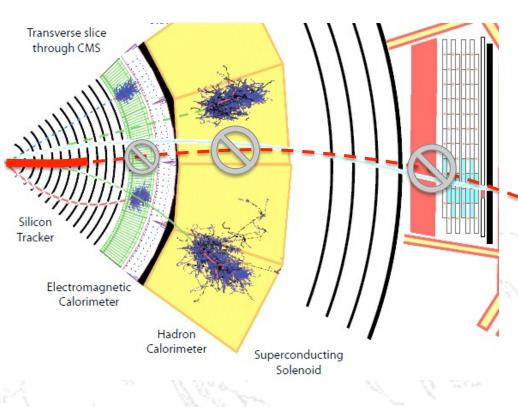

latency prototype algorithm ~ 0.5µs,
 with reasonable FPGA resource usage

Performance

- Performance of an H_T trigger using jets made from:
 - Calorimeters alone
 - L1 Tracks (with PV constraint)
 - PF (+Puppi pileup mitigation)
- In all cases, use ak4 jets with corrected p_T > 30 GeV, |η| < 2.4
- Compare turn-on curve at a fixed background rate:
 - PF has lowest theshold (best rate reduction)
 - PF has best turn on shape (best correlation with true H_T)

Physics implications?

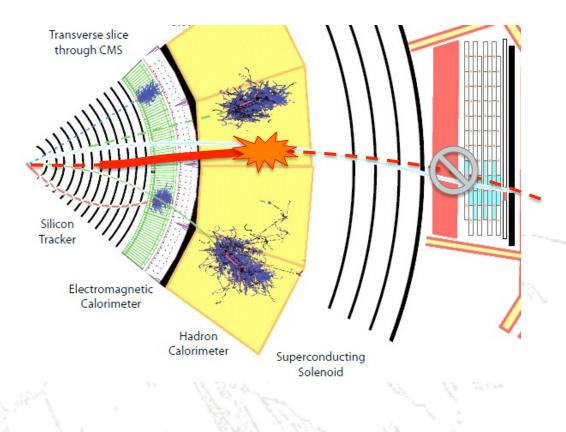
- Expect PF to improve L1 reconstruction performance especially for jets, p_T^{miss} , τ
 - Important in selecting BSM physics decaying to SM particles, or produced in association with SM particles
 - Should be able to preserve efficiency for events with many moderate p_T jets (e.g. ttH, tttt, ...)
- Could it provide new handles to trigger directly on some exotic signatures?
 - "Yes if you could select those events offline without pixel subdetector and without a custom tracking" would be my best guess at a generic answer.



G. Petrucciani (CERN)

PF response to BSM signals: disappearing charged particle

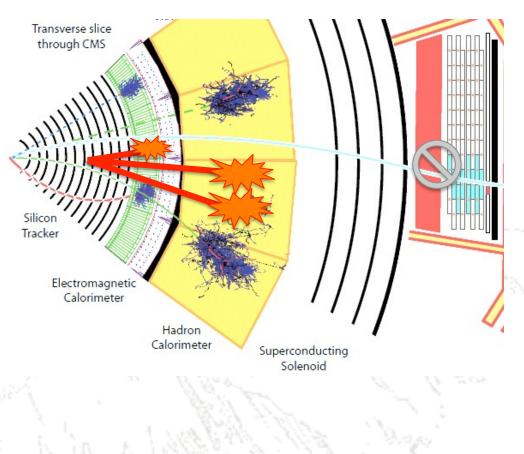
- short high p_T track, no energy in calo, no muon signal
 - if the track is reconstructed it will be rejected by PF algo as fake
- Short track likely not reconstructed at L1
 - need ≥4 layers of outer tracker for a decent L1 track
- Will look like p_T^{miss}



G. Petrucciani (CERN)

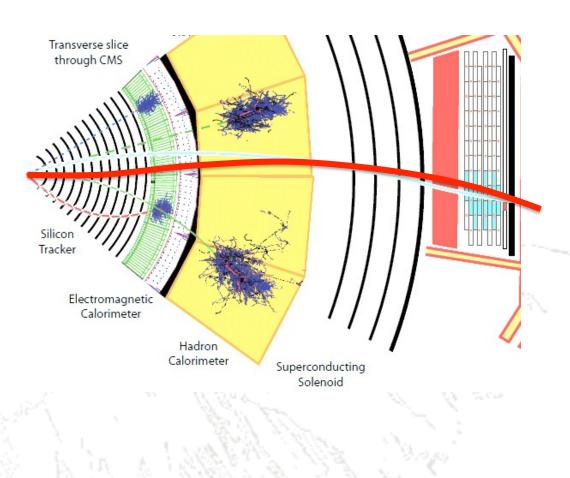
PF response to BSM signals: appearing charged particle

- track starting late + signal in the calo.
- early decay: track will look ordinary
 - L1 can't notice the lack of pixel hits
- late decay: track may be missed
- Will look like a charged hadron, or a neutral one



PF response to BSM signals: appearing jets

- signal will be seen in the calorimeters
 - PF will reconstruct the visible energy
- if tracks are found, they will likely not point to the PV
 - pile-up removal algorithms may reject them
 - Jet ID may dislike
 jets with no charged
 particles inside



G. Petrucciani (CERN)

PF response to BSM signals: heavy stable charged particle

- long high p_⊤ track,
 ~ no energy in calo,
 a muon signal
 - will look like an
 isolated muon
 (dE/dx info not
 available in L1T)
- If it's too slow, the muon stub may be out of time
 - but it could still be available for PF to use in L1 reco

