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INTRODUCTION AND OUTLINE

Last talk, Giovanni: 
Particle Flow - efficient combination of detector information to 
extract best physics performance 

Building of the technology presented by Giovanni… 
This talk: more advanced algorithms 

Dealing with pileup 
PUPPI proof-of-concept: jets, MET, jet substructure (?),… 
More sophistication with machine learning and HLS4ML 
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HL-LHC AND PILEUP 3

2016: <PU> ~ 20-50 
2017 + Run 3: <PU> ~ 50-80 

HL-LHC: 140-200

Multiple pp collisions in the same beam crossing 
To increase data rate, squeeze beams as much as possible



HL-LHC AND PILEUP 3

2016: <PU> ~ 20-50 
2017 + Run 3: <PU> ~ 50-80 

HL-LHC: 140-200

Multiple pp collisions in the same beam crossing 
To increase data rate, squeeze beams as much as possible

Need sophisticated techniques to preserve the physics!



PUPPI
PUPPI (PileUp Per Particle Id): based on PF paradigm

a general framework that determines, per particle, weight for how likely a 
particle is from PU 
key insight: using QCD ansatz to infer neutral pileup contribution
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[1] define a local discriminant, α,  
between pileup (PU) and leading 
vertex (LV)

[2] get data-driven α distribution for PU using 
charged PU tracks
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PUPPI
PUPPI (PileUp Per Particle Id): based on PF paradigm

a general framework that determines, per particle, weight for how likely a 
particle is from PU 
key insight: using QCD ansatz to infer neutral pileup contribution
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[1] define a local discriminant, α,  
between pileup (PU) and leading 
vertex (LV)

[2] get data-driven α distribution for PU using 
charged PU tracks

[3] for the neutrals, ask “how un-PU-like is α for 
this particle?”, compute a weight

[4] reweight the four-vector of the particle by this 
weight, then proceed to interpret the event as usual



PUPPI
PUPPI (PileUp Per Particle Id): based on PF paradigm

a general framework that determines, per particle, weight for how likely a 
particle is from PU 
key insight: using QCD ansatz to infer neutral pileup contribution
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Samples

I Dijet events

I Considering N
PV

= 20-140 in incrememnts of 20

I Assume perfect tracking up until h<2.5
I Neutrals (and particles outside of tracking region)

are reconstructed in cells of Dh ⇥ Df = 0.1 ⇥ 0.1
I Apply threshold of 100 MeV to the towers

I Event display shows constituents in red, with size
proportional to p

T

, and truth jets in black

I Current studies shown in central region (|h| < 2.0),
but will look at forward region in the near future
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SoftPUPPI Event Displays

I Keeps more of the soft event near the core of the jet

I Most of the event outside of the jets eliminated
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“Soft Puppi”, Work in progress
Roloff, Cacciari, Harris, Salam, Soyez, NT
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9.3. Jet and Missing Transverse Energy Performance 261

 (GeV)
T

q
0 20 40 60 80 100 120 140 160 180 200

T
>/

q
-<

u

0.5

0.6

0.7

0.8
0.9

1

1.1

1.2

1.3
1.4

1.5 14 TeV

CMS Simulation PF, Phase I 50 PU

PF, Phase I aged 140 PU

PF, Phase II 140 PU

PF, Phase I 50 PU

PF, Phase I aged 140 PU

PF, Phase II 140 PU

 (GeV)
T

q
0 20 40 60 80 100 120 140 160 180 200

T
>/

q
-<

u

0.5

0.6

0.7

0.8
0.9

1

1.1

1.2

1.3
1.4

1.5 14 TeV

CMS Simulation PUPPI, Phase I 50 PU

PUPPI, Phase I aged 140 PU

PUPPI, Phase II 140 PU

PUPPI, Phase I 50 PU

PUPPI, Phase I aged 140 PU

PUPPI, Phase II 140 PU

Figure 9.8: (left) PF and (right) PUPPI response curves of the hadronic recoil component par-
allel to Z boson as a function of Z boson qT, measured in Z ! µ

+
µ

� events in Phase-I 50PU
no aging (blue point) , Phase-I 140PU with aging (red point), and Phase-II 140PU (green point)
samples.
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Figure 9.9: (left) PF and (right) PUPPI E/T resolution curves for the parallel component of
hadronic recoil to Z boson, measured in Z ! µ

+
µ

� events in Phase-I 50PU no aging (blue
point), Phase-I 140PU with aging (red point), and Phase-II 140PU (green point) samples.

of a Gaussian function fitted to the uk and u? distributions, which have been corrected for E/T
response. Figure 9.9 shows the resolution of the parallel components of PF and PUPPI hadronic
recoil. Because of the smearing from pileup, we don’t observe a strong qT dependent for the
resolution curves as observed in [202]. The Phase-II detector has similar PF E/T resolution as
the Phase-I with aging at 140PU, because of the large pileup smearing effect. With the PUPPI
pileup mitigation, the Phase-II detector with 140 pileup has E/T resolution that is a factor of two
better than is achieved with PF E/T.

Particle flow and pileup mitigation rely heavily on tracking. In the Phase-I detector, there
is no tracking to help in the forward direction, |h| > 2.5. The Phase-II upgrade addresses
this problem by extending tracking to |h| ⇠ 4. The effectiveness of this forward tracking is
shown in Figure 9.10, which compares the distribution of E/T in Drell-Yan events for the Phase-
I detector with the identical detector except that it has the tracking extended in h. Since this
sample should have relatively little E/T, the tracking extension has clearly reduced the false E/T
by a large amount.
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Figure 9.9: (left) PF and (right) PUPPI E/T resolution curves for the parallel component of
hadronic recoil to Z boson, measured in Z ! µ

+
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� events in Phase-I 50PU no aging (blue
point), Phase-I 140PU with aging (red point), and Phase-II 140PU (green point) samples.

of a Gaussian function fitted to the uk and u? distributions, which have been corrected for E/T
response. Figure 9.9 shows the resolution of the parallel components of PF and PUPPI hadronic
recoil. Because of the smearing from pileup, we don’t observe a strong qT dependent for the
resolution curves as observed in [202]. The Phase-II detector has similar PF E/T resolution as
the Phase-I with aging at 140PU, because of the large pileup smearing effect. With the PUPPI
pileup mitigation, the Phase-II detector with 140 pileup has E/T resolution that is a factor of two
better than is achieved with PF E/T.

Particle flow and pileup mitigation rely heavily on tracking. In the Phase-I detector, there
is no tracking to help in the forward direction, |h| > 2.5. The Phase-II upgrade addresses
this problem by extending tracking to |h| ⇠ 4. The effectiveness of this forward tracking is
shown in Figure 9.10, which compares the distribution of E/T in Drell-Yan events for the Phase-
I detector with the identical detector except that it has the tracking extended in h. Since this
sample should have relatively little E/T, the tracking extension has clearly reduced the false E/T
by a large amount.

MET resolution, 140 PU

[LHCC-P-008]

many gains at high PU 
jet pT resolution


fake jet rate

MET resolution

jet substructure

lepton isolation


…
PF MET

PUPPI MET

Large gains from PUPPI, especially at high PU

arXiv:1407.6013 (original), LHCC-P-008 (CMS TP), JME-14-001, CMS analyses,…



BEYOND JETS AND MET 8

Trying to preserve soft, hidden physics  
Things hidden in jets and jet substructure 
Isolated, soft leptons in high PU environments
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W-tagging signal efficiency in simulation

Figure 2 a + b: Tagging efficiency versus number of primary vertices (a) and jet transverse 
momentum (b) for three different W-tagging algorithms: Pruning + n-subjettiness (!21≤0.45), PUPPI 
softdrop + !21 (!21≤0.40) and PUPPI softdrop + DDT (DDT≤0.52), where DDT = !21,PUPPI + 
0.063*log(M2PUPPI/pT,PUPPI). A mass selection of 65 GeV < MP/SD < 105 GeV has been applied. 
Performance is shown before (solid pink, solid purple) and after n-subjettiness selections are 
applied. W-jets from a mixture of Bulk G→WW signal samples are used for the signal definition.

* Examples plots from offline studies
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IMPLEMENTATION

Implementation of Puppi proof-of-concept using High level 
synthesis (HLS) as well

9

[1] define a local discriminant, α,  
between pileup (PU) and leading 
vertex (LV)



IMPLEMENTATION

Implementation of Puppi proof-of-concept using High level 
synthesis (HLS) as well

9

[1] define a local discriminant, α,  
between pileup (PU) and leading 
vertex (LV)

[2] get data-driven α distribution for PU using 
charged PU tracks

[3] for the neutrals, ask “how un-PU-like is α for 
this particle?”, compute a weight

[4] reweight the four-vector of the particle by this 
weight, then proceed to interpret the event as usual



PERFORMANCE 10

Particle-Flow Algorithms

20
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CMS Simulation Preliminary

MET

HT

First physics results on HT and MET triggers for 

CMS phase-2 trigger interim document

Gains in rate reduction, signal efficiency, lower thresholds



PLANS AND OUTLOOK

Bringing advanced physics algorithms to the hardware trigger! 
Proof-of-concept PF+PUPPI running at L1  
large physics gains: HT, MET, jet (substructure), lepton isolation 

Other advanced algorithms… 
how about machine learning?

11
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high level synthesis for machine learning 
HLSFML 
HLS4ML

JENNIFER NGADIUBA, MAURIZIO PIERINI (CERN) 
JAVIER DUARTE, SERGO JINDARIANI, BEN KREIS, NHAN TRAN (FNAL) 

PHIL HARRIS (MIT) 
ZHENBIN WU (UIC) 

+ EJ KREINAR (HAWKEYE 360) AND SONG HAN (GOOGLE/STANFORD)



MACHINE LEARNING IN FPGAS

Many parts of the trigger could benefit machine learning 
clustering, fitting (regression), classification, anomaly detection 

Not just LHC physics or triggering 
DAQ, neutrino physics, intensity frontier, … 

No industry solutions: LHC latency constraints are unheard of  

Why HLS?  
HLS allows (super)-fast algorithm development 

Write a tool for machine learning inference* at low latencies:  
HLS4ML

13

*for training, GPUs remain top dog



NN INFERENCE IN A NUTSHELL 14

↔

Simple 2 input example 

(Fisher linear discriminant, linear support vector machine,…) 



NN INFERENCE IN A NUTSHELL 15

↔

…….
…

…
.
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…

.
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↔

…….
…

…
.
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…

.

NN inference =  
a bunch of multiplications /additions 

and LUTs (look up tables) for activation functions



(ENERGY) EFFICIENT NEURAL NETWORKS

Emergent engineering field, efficient implementation of NN architecture 
Compression/Pruning:  

maintain the same performance while removing low weight synapses and 
neurons (many schemes) 

Quantization/Approximate math: 
32-bit floating point math is overkill 
20-bit, 18-bit, …? fixed point, integers?  binarized NNs?

16

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

For further reading, start here: https://arxiv.org/pdf/1510.00149v5.pdf



PROJECT OVERVIEW 17

compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision


reuse/latency

HLS 
project

HLS 
conversion

co-processors

RTL design

model
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compressed
model

Keras
TensorFlow

PyTorch
…

tune configuration
precision


reuse/latency

HLS 
project

HLS 
conversion

co-processors

RTL design

model

HLS4ML

Usual software workflow

L1 application: 
custom firmware

Industry co-processors



HLS4ML - TRANSLATION IN ONE LINE!

IOType: parallelize or serialize 
ReuseFactor: how much to parallelize  
DefaultPrecision: self-explanatory :)

18

} Keras/TF inputs

python keras-to-hls.py -c keras-config.yml



EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:  
Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 
ECFs (β=0,1,2)

19

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

16 inputs

64 (relu)

32 (relu)

5 outputs (softmax)

32 (relu) Fully connected deep 
neural network

HLS4ML Work in Progress



• Starting from 40% pruned 
3-layer model


• Pruning bottom 50%  
of weights and retraining


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., pruning 50%

9

EXAMPLE: NETWORK (NOT JET) PRUNING

Resource usage: 
92% DSP usage for Virtex 7 
61 clocks (305 ns), Pipeline = 1 

Compression (50%) + reuse = 2:  
29% DSP usage for Virtex 7 
60 clocks (300 ns), Pipeline = 2 

20

HLS4ML Work in Progress16 inputs

64 (relu)

32 (relu)

32 (relu) Fully connected deep 
neural network

5 outputs (softmax)



MINI-SUMMARY

HLS4ML 
a tool to translate ML algorithms for FPGAs in minutes


highly parallelizable with user controls for resource usage and latency

tunable precision, resource reuse


very efficient network design with model compression

21

Work in progress 
Mapping out resource usage and latency as a function of neural network hyper parameters 
More network architectures: CNN (in progress), RNN/LSTM (tricky!), TMVA BDT (efficient?) 

Status 
Alpha version - few weeks; Targeting March-April release of Beta version 
Please contact us if you are interested! hls4ml.help@gmail.com

mailto:hls4ml.help@gmail.com
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one more fun thing to think about 
for the high level trigger (and beyond?)
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Catapult/Brainwave
Specialized co-processor hardware 
for machine learning inference
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Catapult/Brainwave
Specialized co-processor hardware 
for machine learning inference

Translation of all of wikipedia in 0.1 seconds!

~O(100) times faster than CPU 

It already exists!  

One example: Microsoft catapult



ML BABEL FISH

Large gains from hardware accelerating co-processors 
Industry trending towards specialized computing paradigms

24

Option 1

re-write physics algorithms for 
new hardware

Language: OpenCL, OpenMP, HLS, 
…?

Hardware: FPGA, GPU

Option 2

re-cast physics problem as a 
machine learning problem

Language: C++, Python
(TensorFlow, PyTorch,…)

Hardware: FPGA, GPU, ASIC

Why (Deep) Machine Learning?  
a common language for solving problems  

which can universally be expressed on  
optimized computing hardware and follow industry trends



SUMMARY AND OUTLOOK

Recent advances in hardware and compilation/synthesis allow for 
sophisticated techniques at low latency 

Big improvements in performance,  
preserve soft and hidden signatures  

Proof-of-concept holistic pileup mitigation techniques such as PUPPI  
Efficient machine learning at Level-1 Trigger 

New paradigms for HLT and offline?

25
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BONUS



EXAMPLE: PARALLELIZATION

ReuseFactor: how much to parallelize operations a hidden layer

27

# of multiplications per clock (DSPs usage)

time

parallel

8DSPs in 1 clock

reuse = 1

serial

1 DSP in 8 clocks

parallel

4DSPs in 2 clocks

reuse = 2

(decreasing throughput)



• Starting from 40% pruned 
3-layer model


• Pruning bottom 50%  
of weights and retraining


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., pruning 50%

9

EXAMPLE: NETWORK (NOT JET) PRUNING

Resource usage: 
92% DSP usage for Virtex 7 
61 clocks (305 ns), Pipeline = 1 

Compression (50%) + reuse = 2:  
29% DSP usage for Virtex 7 
60 clocks (300 ns), Pipeline = 2 
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HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep 
neural network



EXAMPLE: QUANTIZATION 29

fixed point precision (<X,4>)
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reuse factor = 1

Take a simple 1-layer network and scan in input/weight precision 
Reduced precision can greatly reduce resource usage 

e.g. factor of 4 reduction with 18 instead of 32 bits with minimal loss in 
performance



UNDER THE HOOD 30

BRAM DSP FF LUT
Total 3 3329 95924 8127

% Usage ~0 92 11 18

time
61 clocks (305 ns)

16 x 64
64 x 32

32 x 32
32 x 5

softmax (5)



THE COMPUTING CHALLENGE 31

Current: 
~5 minutes per 
HL-LHC event 

100 times the 
data…
exabytes! 

Major HLT and computing challenges going forward!



MOORE’S LAW AND DENNARD SCALING 32

Dennard 
Scaling


fails

Moore’s

Law


continues



MOORE’S LAW AND DENNARD SCALING 32

Dennard 
Scaling


fails

Moore’s

Law


continues

Single threaded performance not improving

Circa ~2005: “The Era of Multicore” 
→ Today: Transition to the “Era of Specialization”?  (c.f. Doug Burger)



ARCHITECTURES 33

Source: Bob Broderson, Berkeley Wireless group

GPUs

FPGAs

* GPUs still best option for training

* FPGAs generally much more power efficient

ASICs

CPUs


