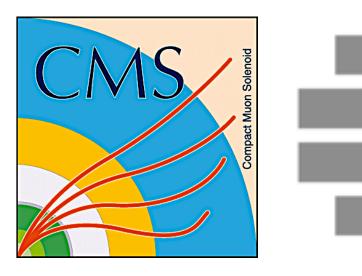
Jets/MET with pileup and machine learning

Nhan Tran Fermilab

Princeton HL-LHC Trigger Workshop January 16, 2018



INTRODUCTION AND OUTLINE

Last talk, Giovanni: **Particle Flow** - efficient combination of detector information to extract best physics performance

Building of the technology presented by Giovanni...

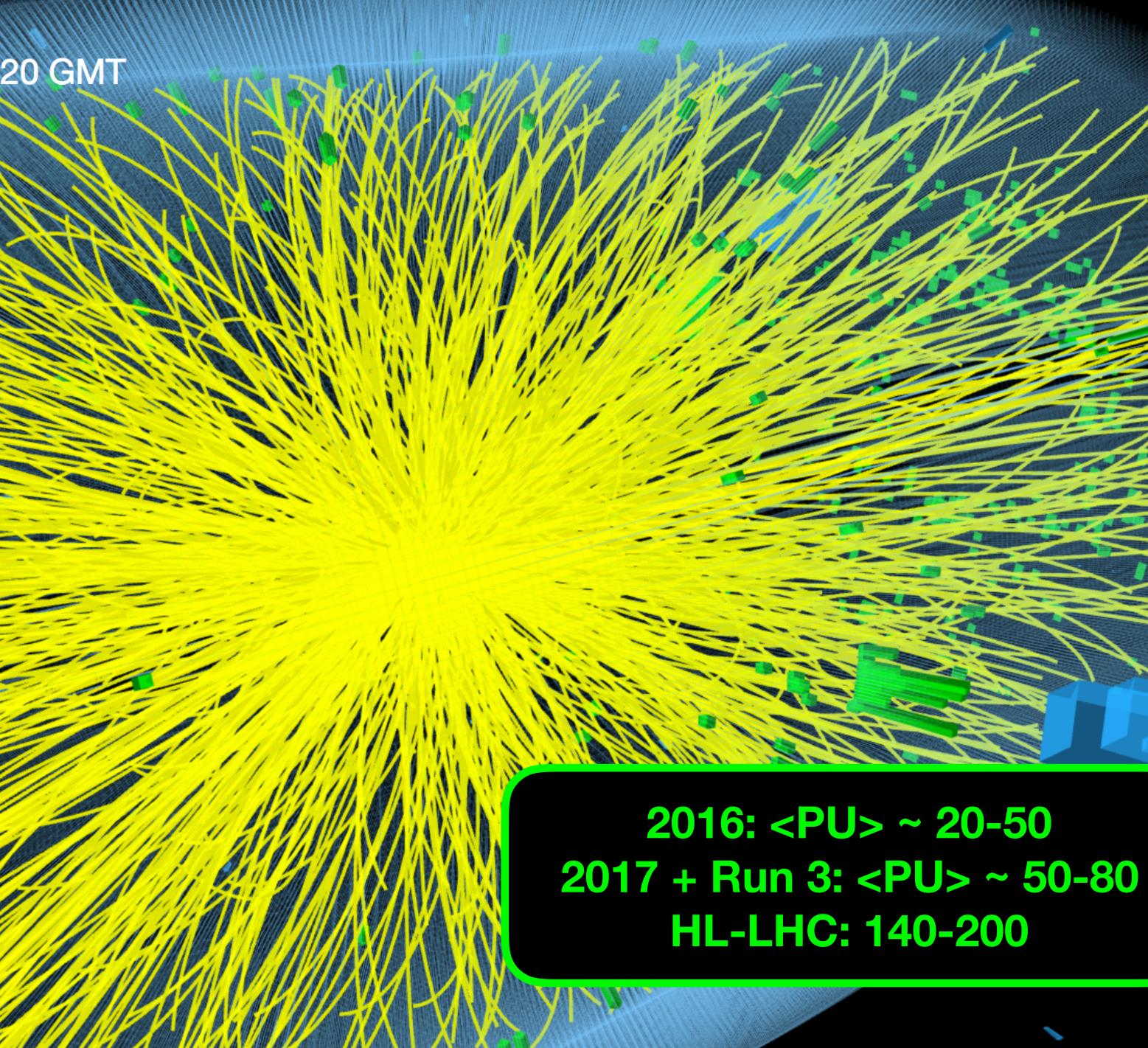
This talk: more advanced algorithms

Dealing with pileup PUPPI proof-of-concept: jets, MET, jet substructure (?),... More sophistication with machine learning and HLS4ML

HL-LHC AND PILEUP

Multiple pp collisions in the same beam crossing To increase data rate, squeeze beams as much as possible

CMS Experiment at the LHC, CERN Data recorded: 2016-Sep-08 08:30:28.497920 GMT Run / Event / LS: 280327 / 55711771 / 67

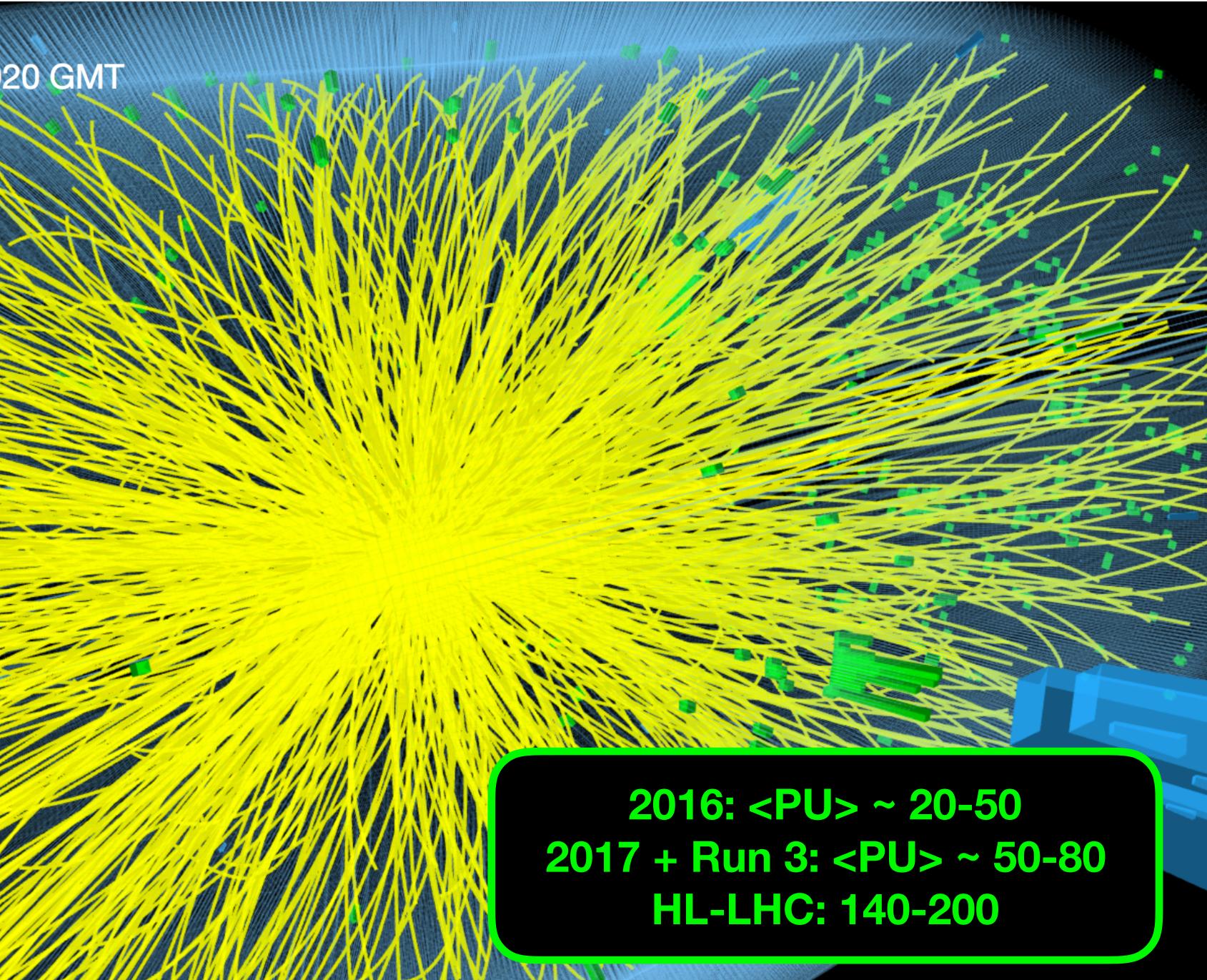


HL-LHC AND PILEUP

Multiple pp collisions in the same beam crossing To increase data rate, squeeze beams as much as possible

CMS Experiment at the LHC, CERN Data recorded: 2016-Sep-08 08:30:28.497920 GMT Run / Event / LS: 280327 / 55711771 / 67

Need sophisticated techniques to preserve the physics!



PUPPI

PUPPI (PileUp Per Particle Id): based on PF paradigm

particle is from PU

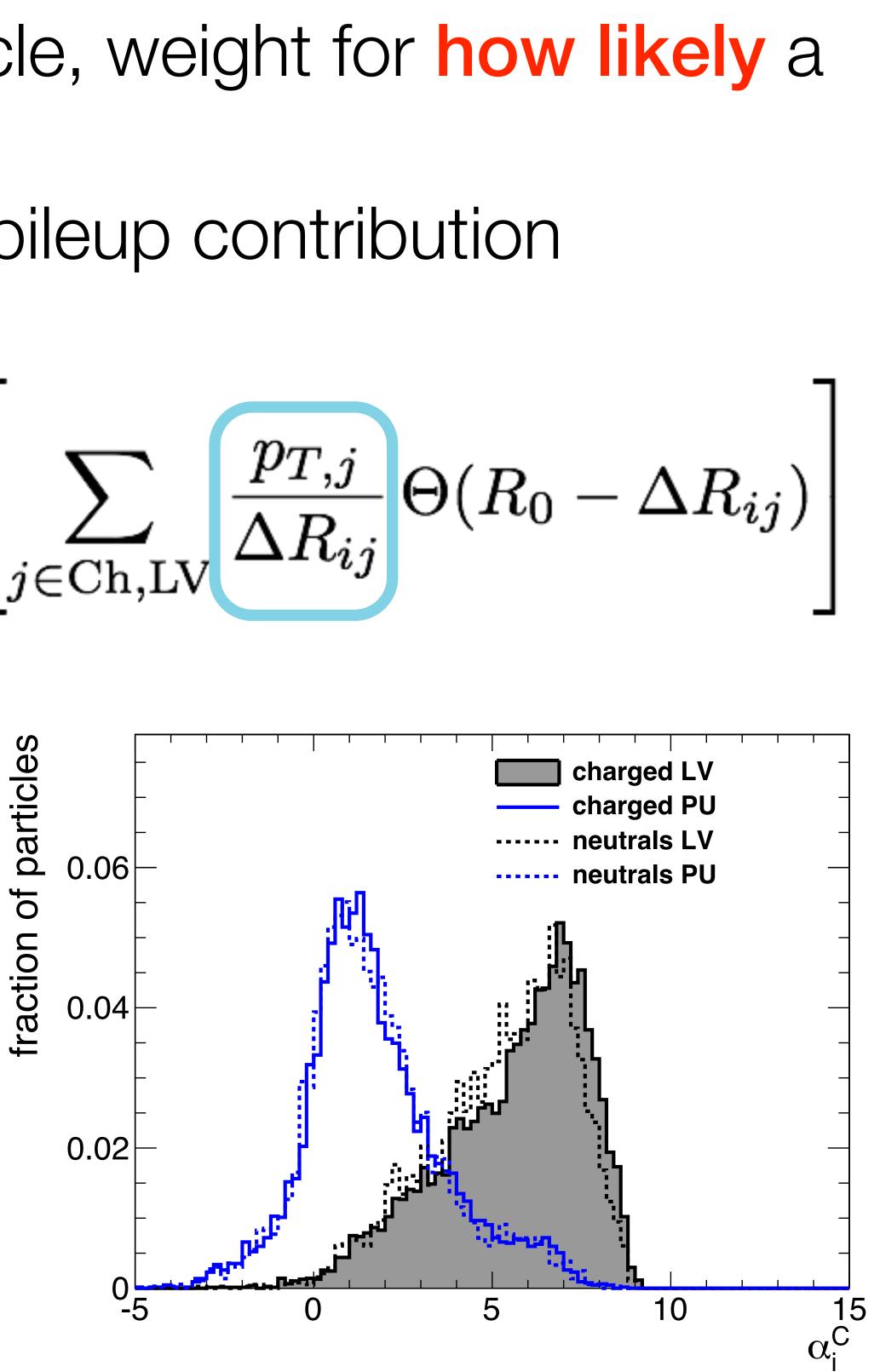
[1] define a local discriminant, a between pileup (PU) and leading vertex (LV)

[2] get data-driven a distribution for PU using charged PU tracks

a general framework that determines, per particle, weight for how likely a

key insight: using QCD ansatz to infer neutral pileup contribution

$$\alpha_i^C = \log \left[\sum_{i \in \text{Ch.LV}} \frac{p_{T,j}}{\Delta R_{ij}} \Theta(R) \right]$$



PUPPI

PUPPI (PileUp Per Particle Id): based on PF paradigm

particle is from PU

[1] define a local discriminant, q between pileup (PU) and leading vertex (LV)

[2] get data-driven a distribution for PU using charged PU tracks

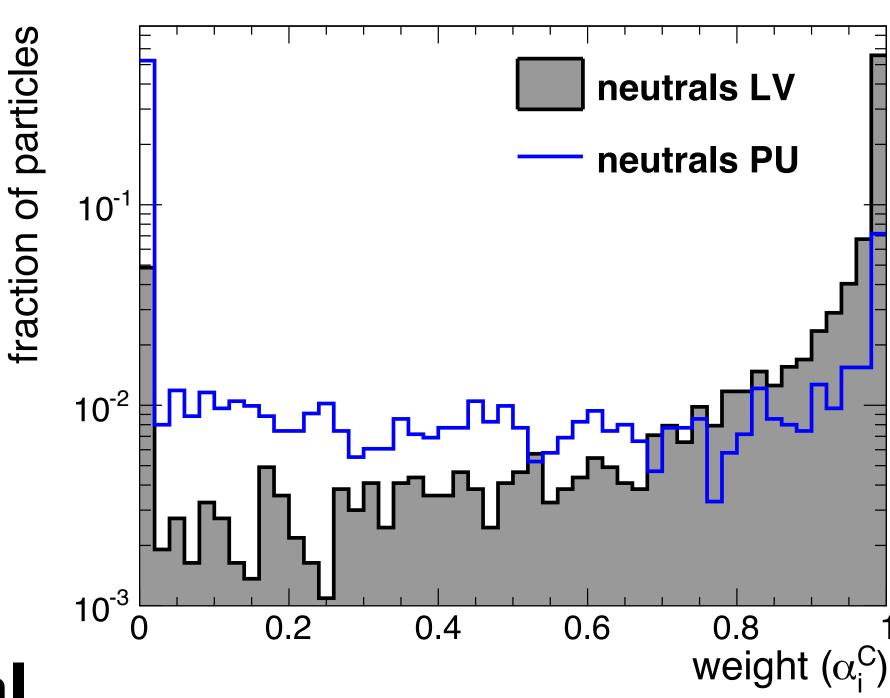
[3] for the neutrals, ask "how un-PU-like is a for this particle?", compute a weight

[4] reweight the four-vector of the particle by this weight, then proceed to interpret the event as usual

a general framework that determines, per particle, weight for how likely a

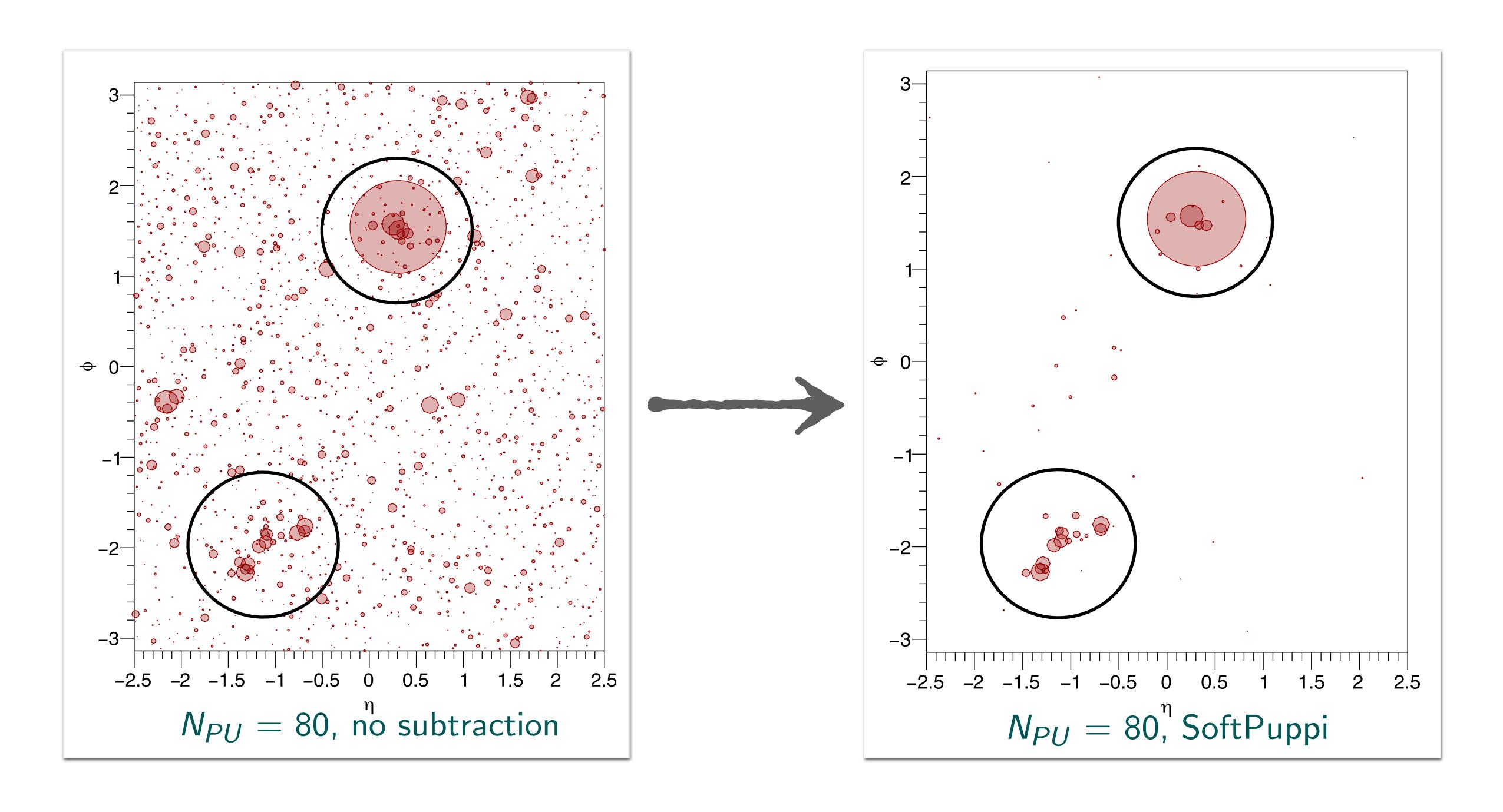
key insight: using QCD ansatz to infer neutral pileup contribution

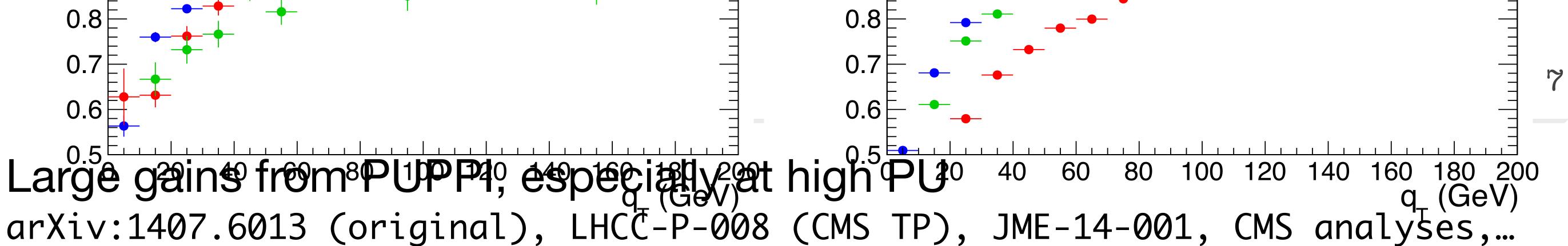
$$\alpha_i^C = \log \left[\sum_{j \in Ch, LV} \frac{p_{T,j}}{\Delta R_{ij}} \Theta(R) \right]$$

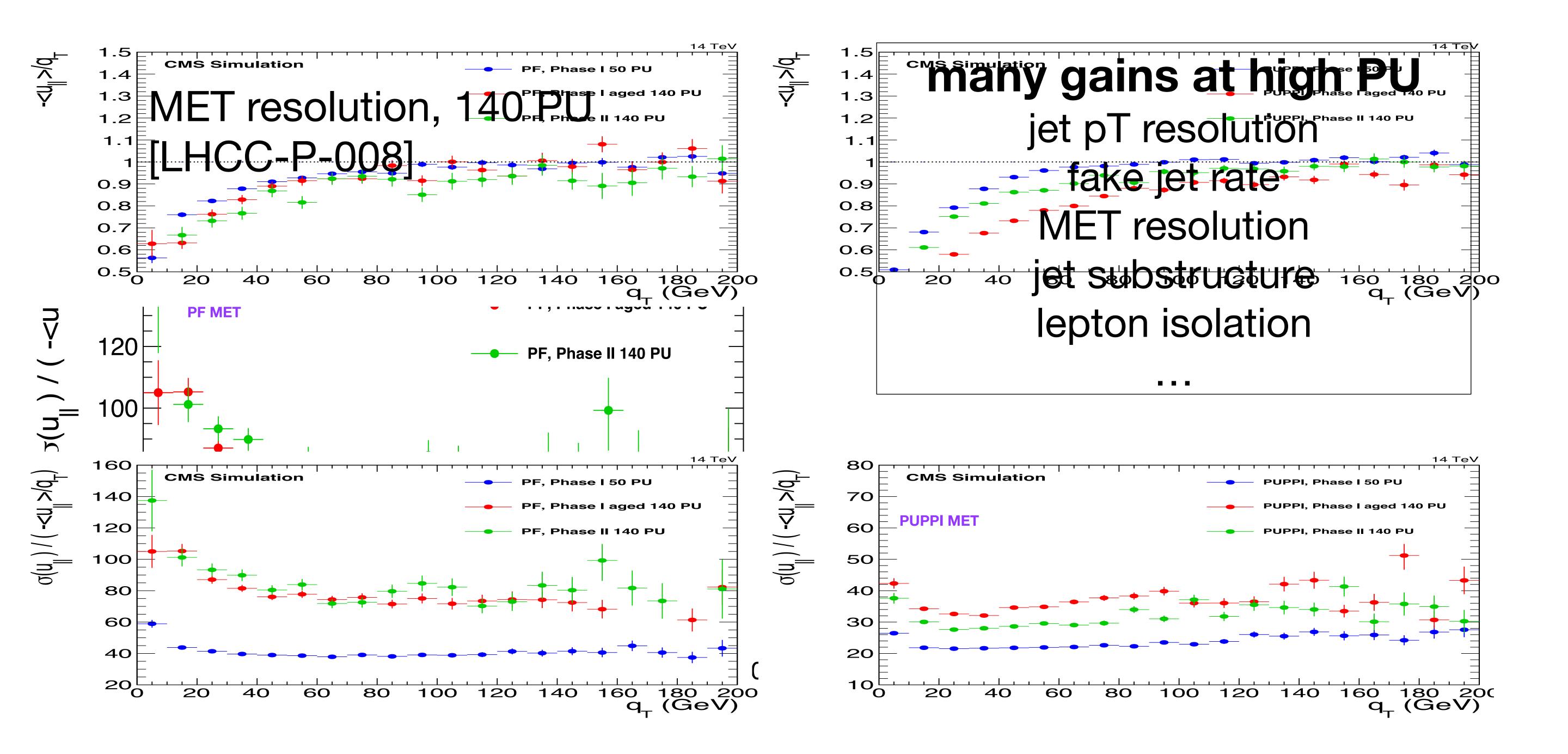


PUPPI

PUPPI (PileUp Per Particle Id): based on PF paradigm a general framework that determines, per particle, weight for how likely a particle is from PU key insight: using QCD ansatz to infer neutral pileup contribution



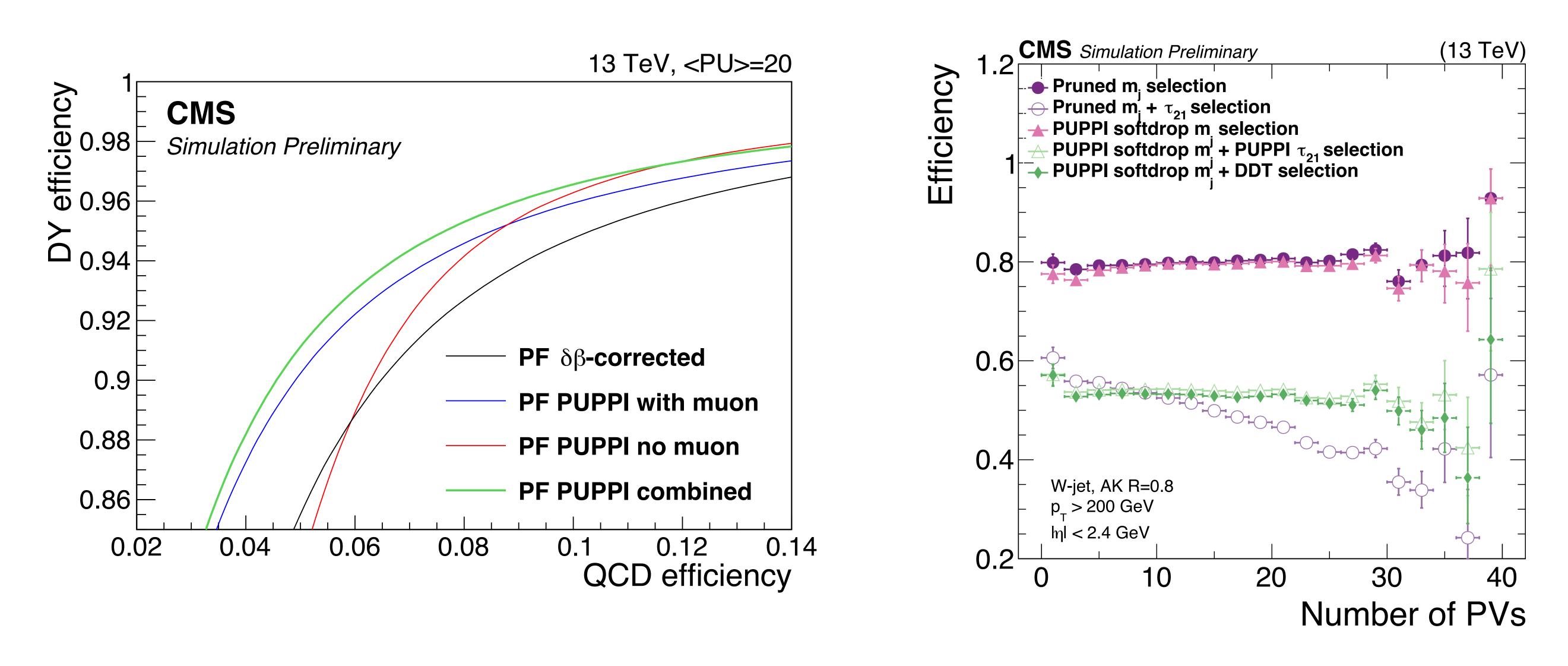




BEYOND JETS AND MET

Trying to preserve soft, hidden physics Things hidden in jets and jet substructure Isolated, soft leptons in high PU environments

* Examples plots from offline studies



Large gains is soft muon backgrounds and jet substructure

MPLEMENTATION

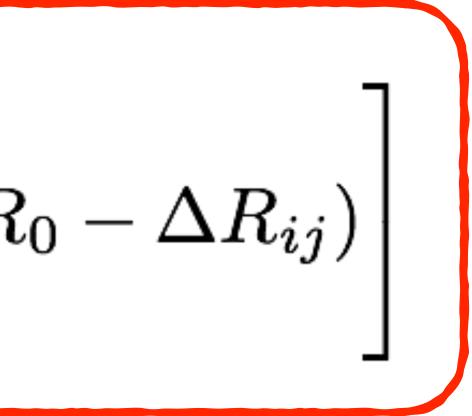
synthesis (HLS) as well

[1] define a local discriminant, **a** between pileup (PU) and leading vertex (LV)

Implementation of Puppi proof-of-concept using High level

COMPUTE FOR EACH NEUTRAL

,
$$\alpha_i^C = \log \left[\sum_{j \in Ch, LV} \frac{p_{T,j}}{\Delta R_{ij}} \Theta(R) \right]$$



MPLEMENTATION

synthesis (HLS) as well

[1] define a local discriminant, **a** between pileup (PU) and leading vertex (LV)

[2] get data-driven a distribution for PU using charged PU tracks

[3] for the neutrals, ask "how un-PU-like is a for this particle?", compute a weight

[4] reweight the four-vector of the particle by this weight, then proceed to interpret the event as usual

Implementation of Puppi proof-of-concept using High level

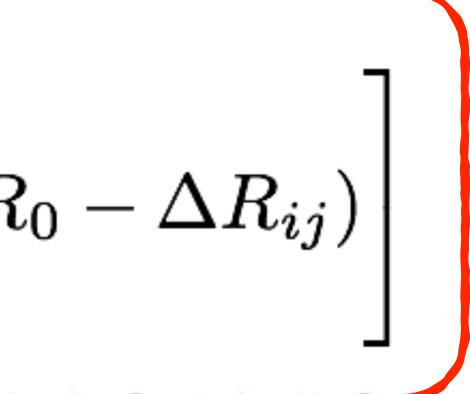
COMPUTE FOR EACH NEUTRAL

,
$$\alpha_i^C = \log \left[\sum_{j \in Ch, LV} \frac{p_{T,j}}{\Delta R_{ij}} \Theta(R) \right]$$

PRECOMPUTE STEP 2 OFFLINE WITH CONSTANTS (FOR GIVEN PILEUP LEVEL)

DO STEP 3/4 WITH A LOOK-UP TABLE

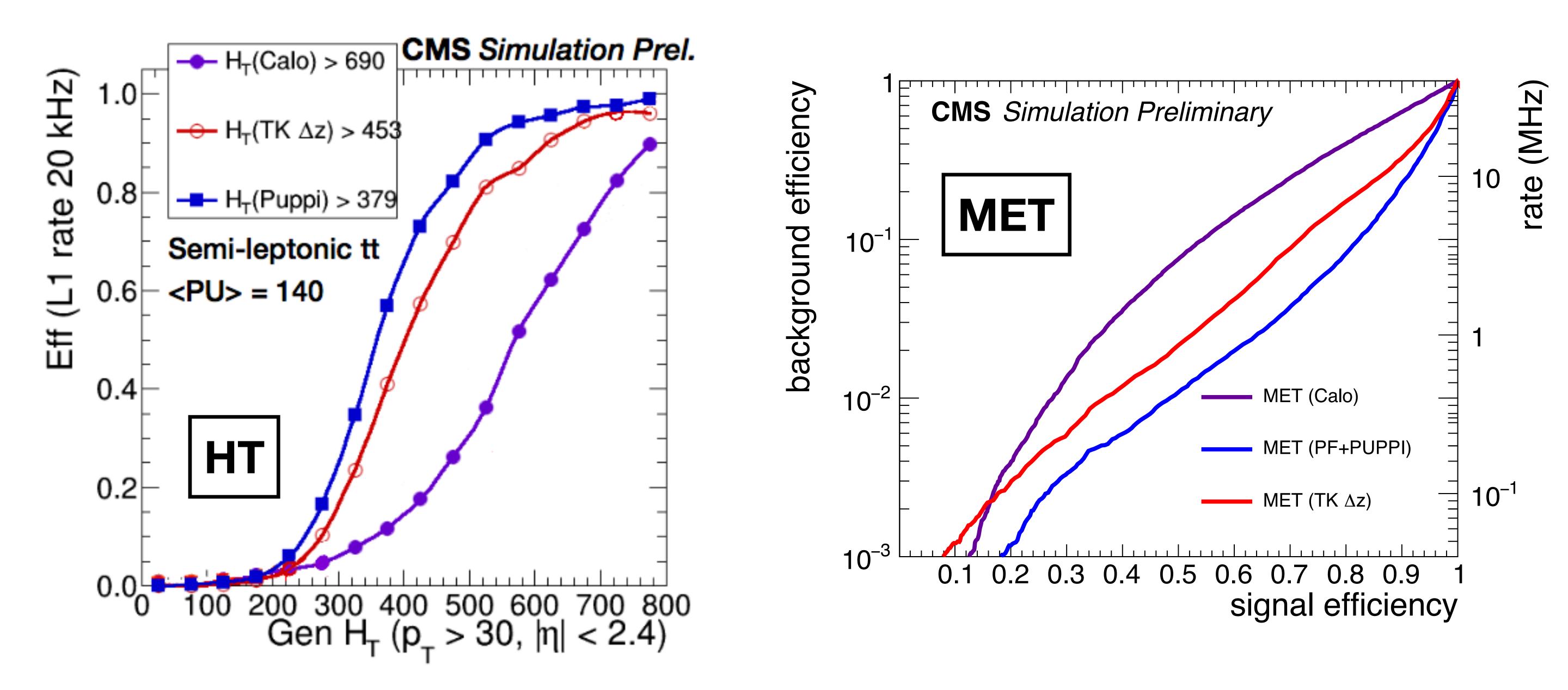
OF FPGA AND 100S OF NS LATENCY WITH LITTLE DEGRADATION IN PERFORMANCE



- RESOURCE USAGE ONLY FEW %

PERFORMANCE

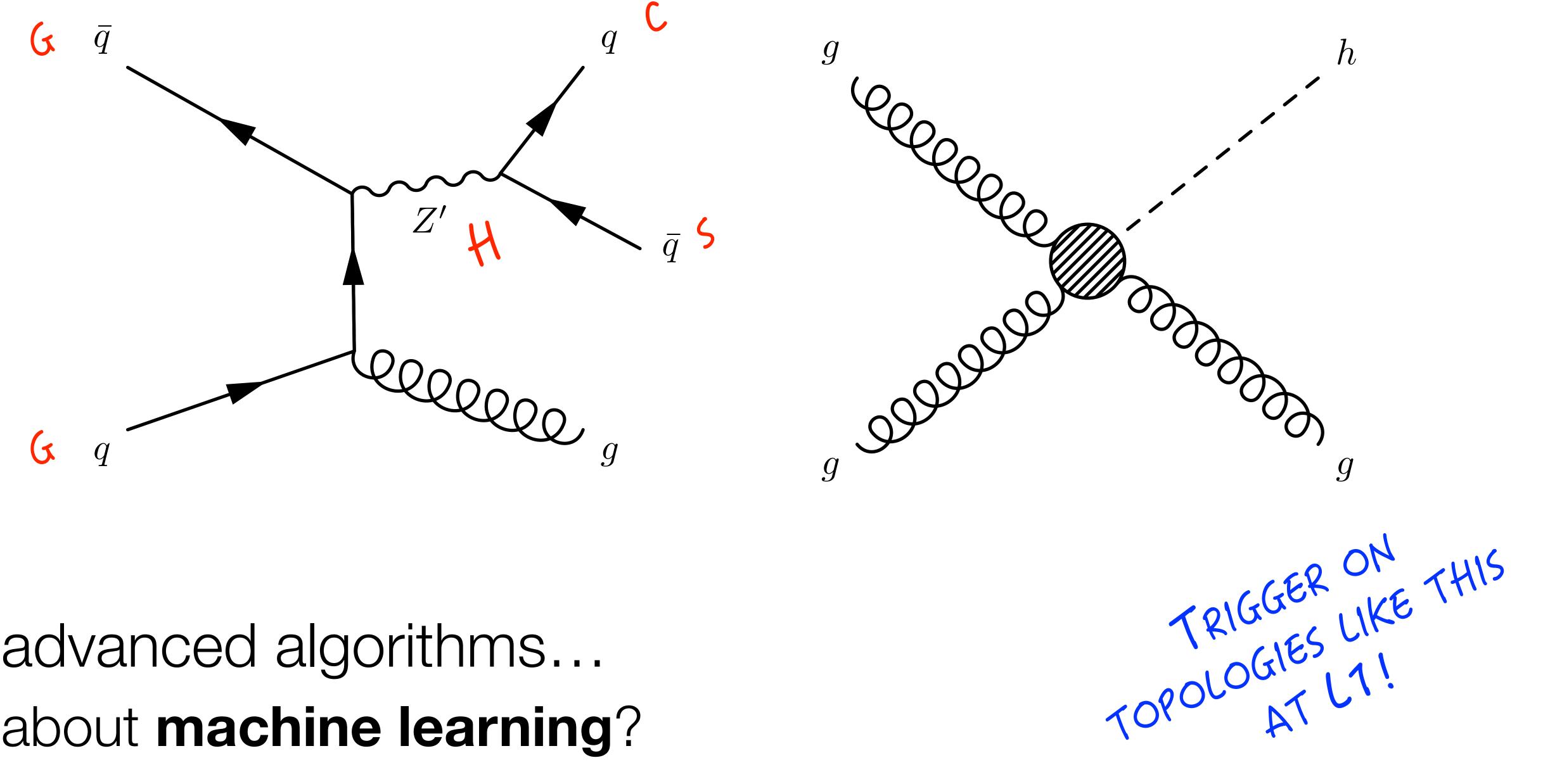
First physics results on HT and MET triggers for CMS phase-2 trigger interim document



Gains in rate reduction, signal efficiency, lower thresholds

PLANS AND OUTLOOK

Proof-of-concept PF+PUPPI running at L1



Other advanced algorithms... how about machine learning?

Bringing advanced physics algorithms to the hardware trigger! large physics gains: HT, MET, jet (substructure), lepton isolation

high level synthesis for machine learning HISFML HLS4ML

JENNIFER NGADIUBA, MAURIZIO PIERINI (CERN) JAVIER DUARTE, SERGO JINDARIANI, BEN KREIS, NHAN TRAN (FNAL) PHIL HARRIS (MIT) ZHENBIN WU (UIC)

+ EJ KREINAR (HAWKEYE 360) AND SONG HAN (GOOGLE/STANFORD)

MACHINE LEARNING IN FPGAS

Many parts of the trigger could benefit machine learning clustering, fitting (regression), classification, anomaly detection

Not just LHC physics or triggering DAQ, neutrino physics, intensity frontier, ...

No industry solutions: LHC latency constraints are unheard of

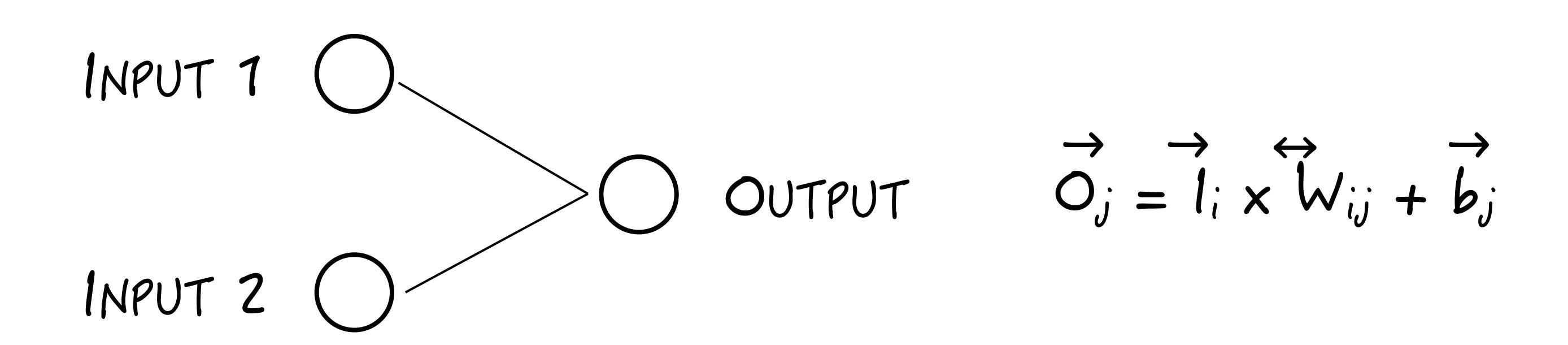
Why HLS?

HLS allows (super)-fast algorithm development

Write a tool for machine learning *inference** at low latencies: HLS4ML

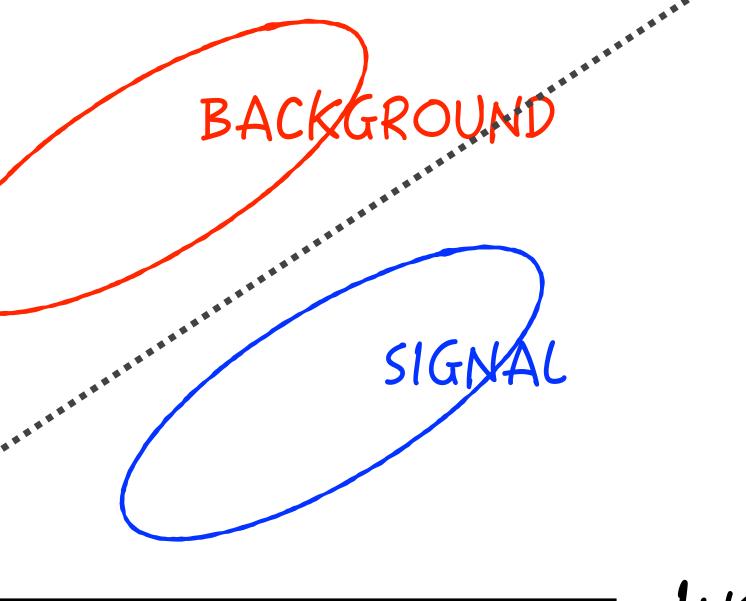
* for training, GPUs remain top dog

NN INFERENCE IN A NUTSHELL



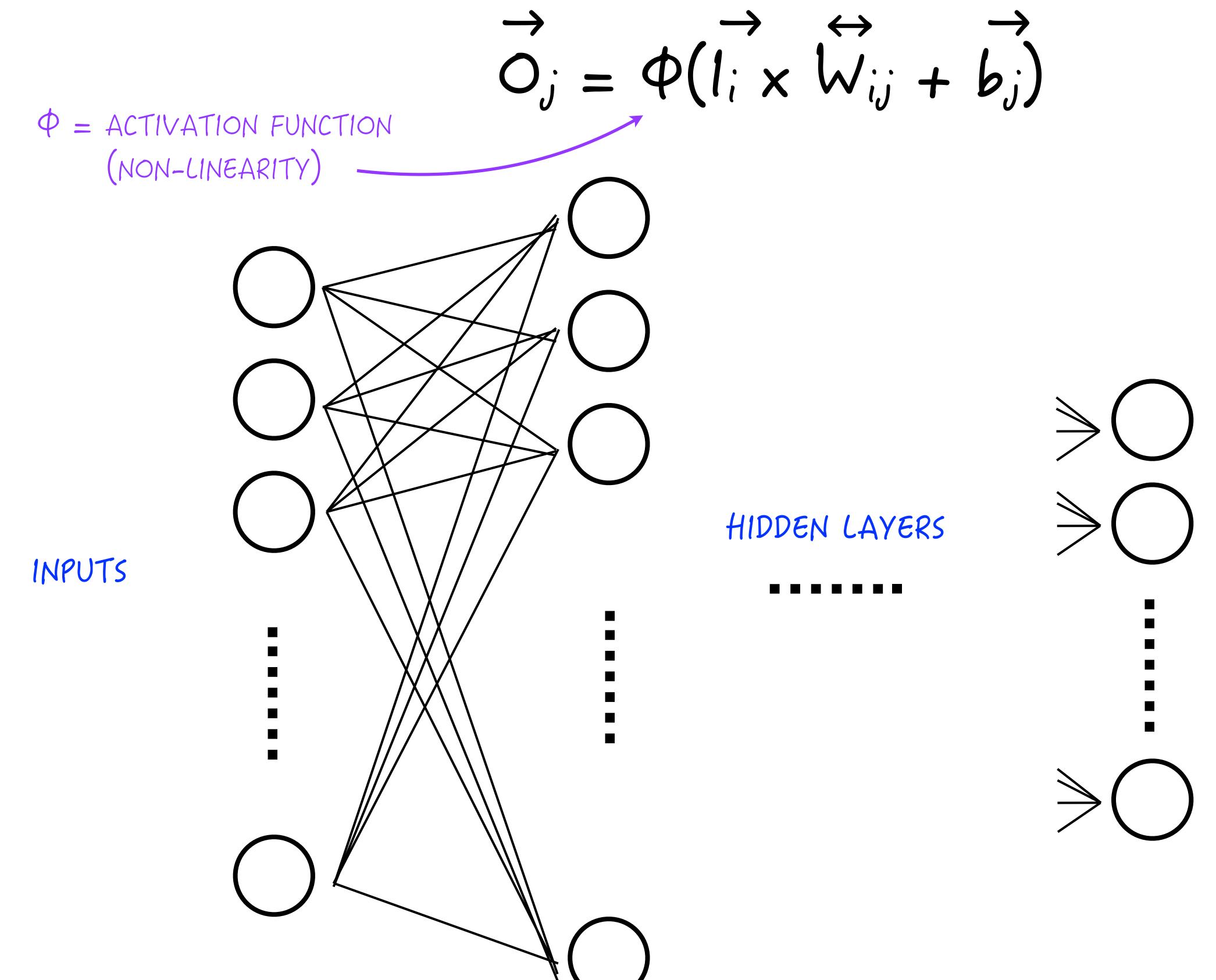
Simple 2 input example (Fisher linear discriminant, linear support vector machine,...) $O_1 = I_1 \times W_{11} + I_2 \times W_{21} + b_1$

INPUT 7



INPUT 2

NN INFERENCE IN A NUTSHELL

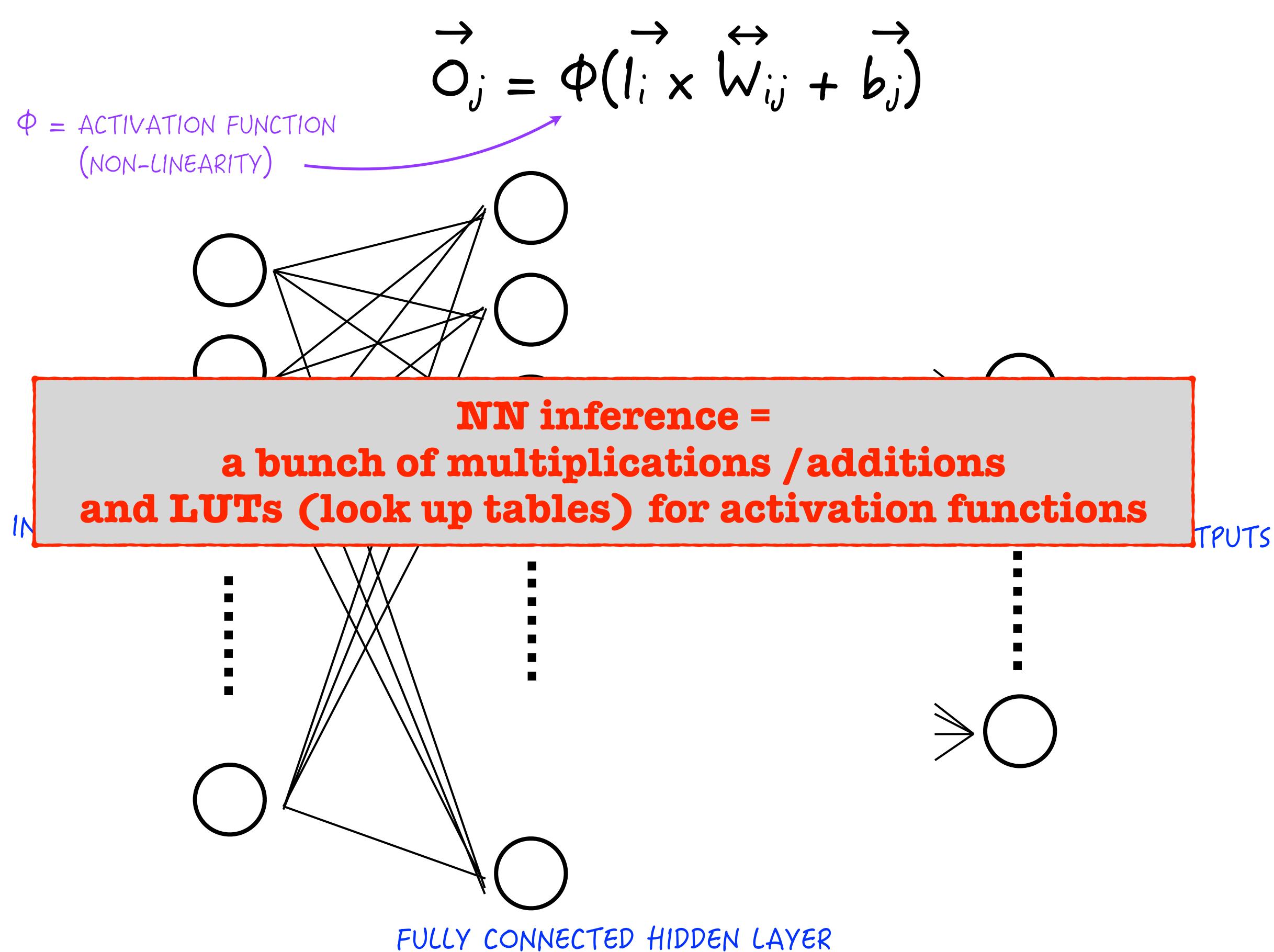


FULLY CONNECTED HIDDEN LAYER

15

OUTPUTS

NN INFERENCE IN A NUTSHELL



(ENERGY) EFFICIENT NEURAL NETWORKS

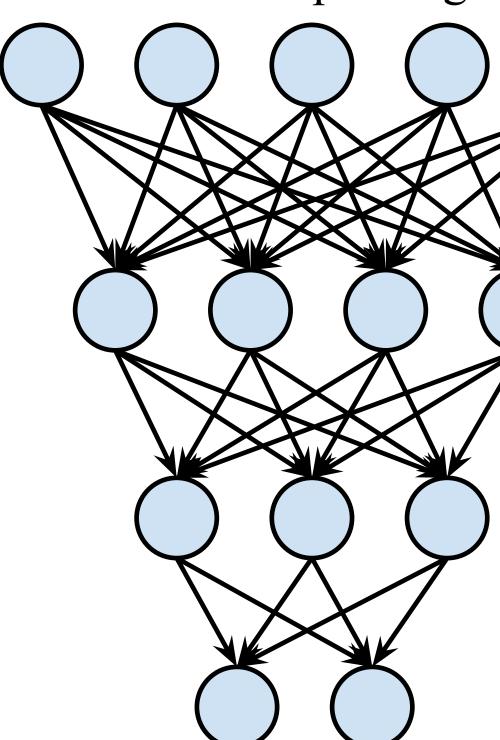
Compression/Pruning:

neurons (many schemes)

Quantization/Approximate math:

32-bit floating point math is overkill 20-bit, 18-bit, ...? fixed point, integers? binarized NNs?

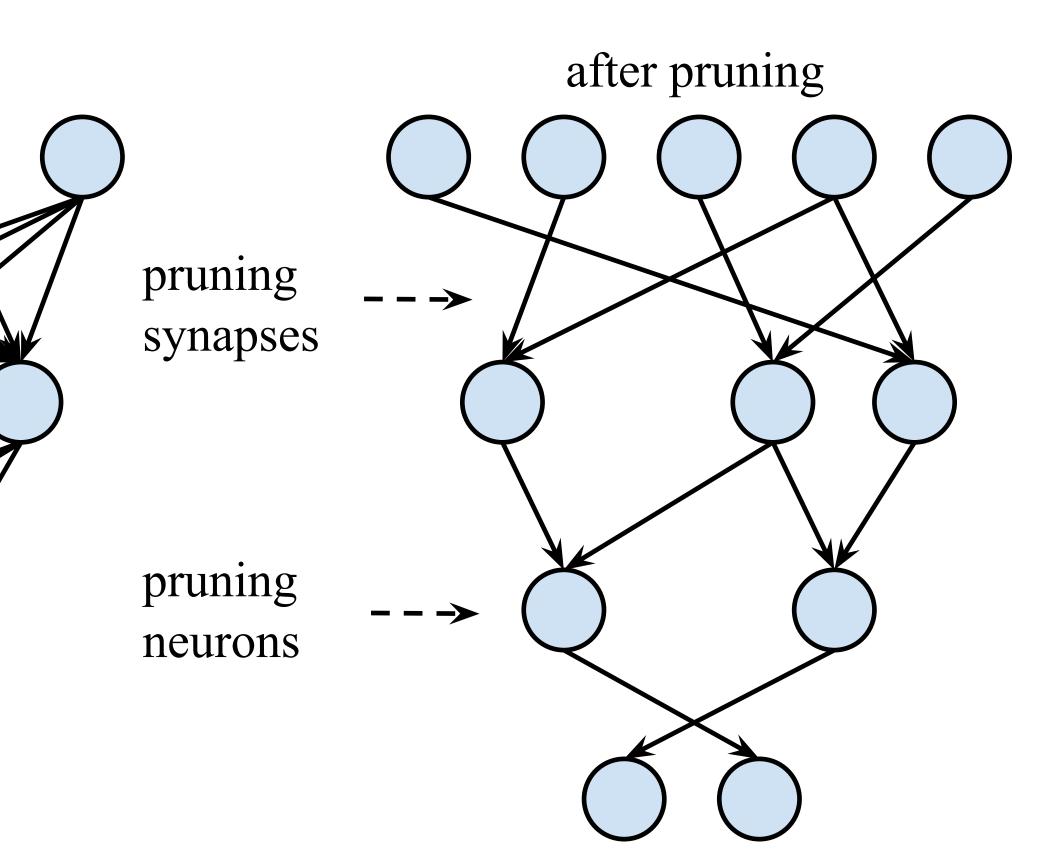
before pruning



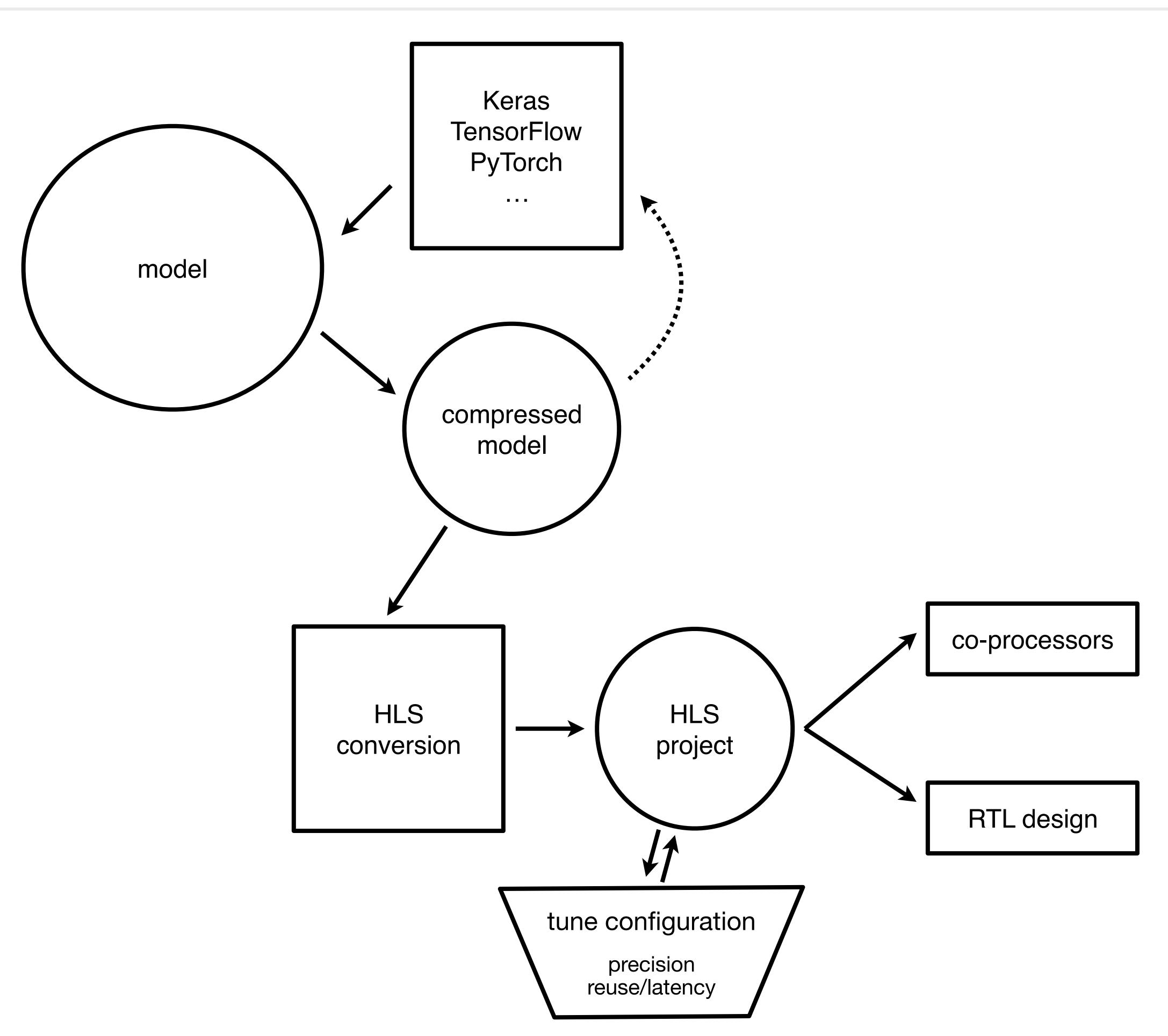
For further reading, start here: https://arxiv.org/pdf/1510.00149v5.pdf

Emergent engineering field, efficient implementation of NN architecture

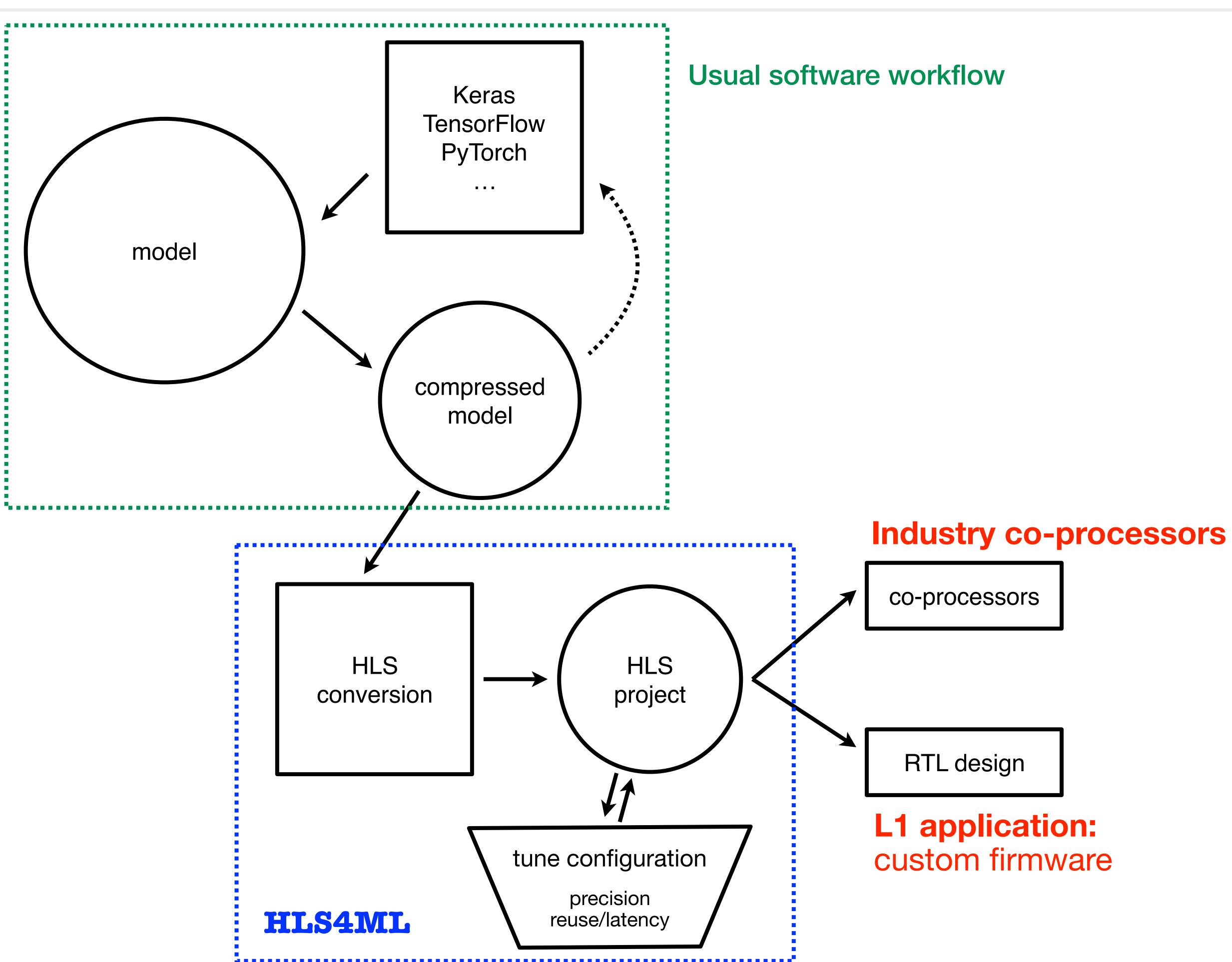
- maintain the same performance while removing low weight synapses and



PROJECT OVERVIEW

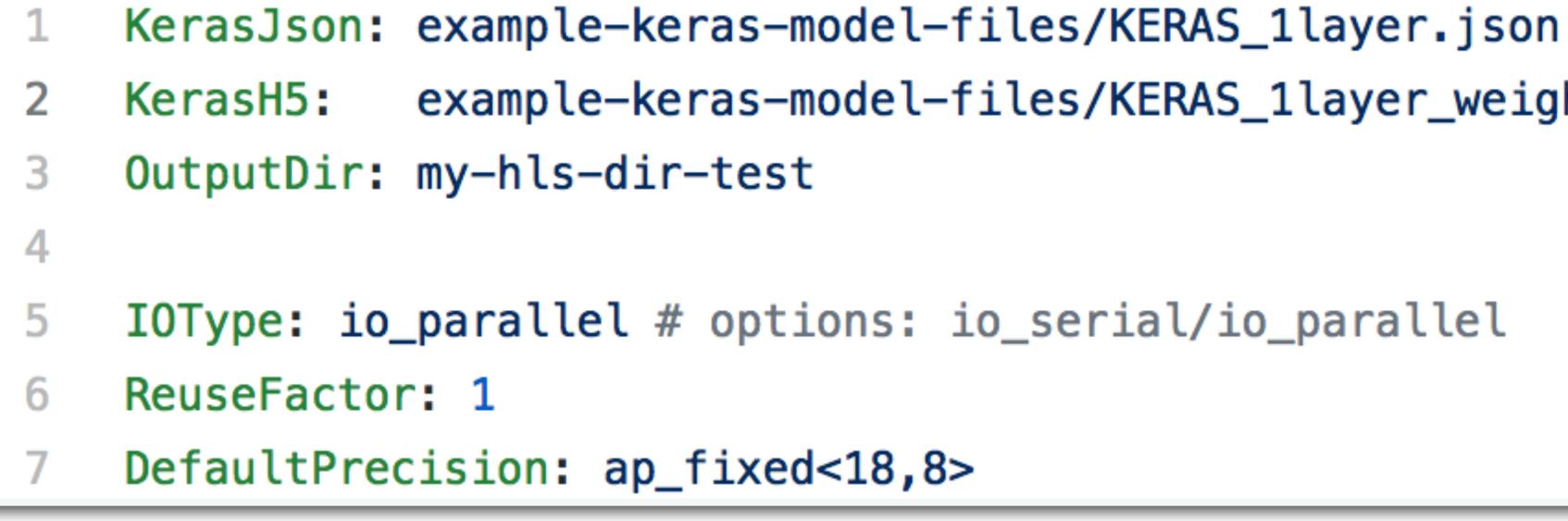


PROJECT OVERVIEW



HLS4ML - TRANSLATION IN ONE LINE!

python keras-to-hls.py -c keras-config.yml



IOType: parallelize or serialize **ReuseFactor**: how much to parallelize **DefaultPrecision**: self-explanatory :)

example-keras-model-files/KERAS_1layer_weights.h5

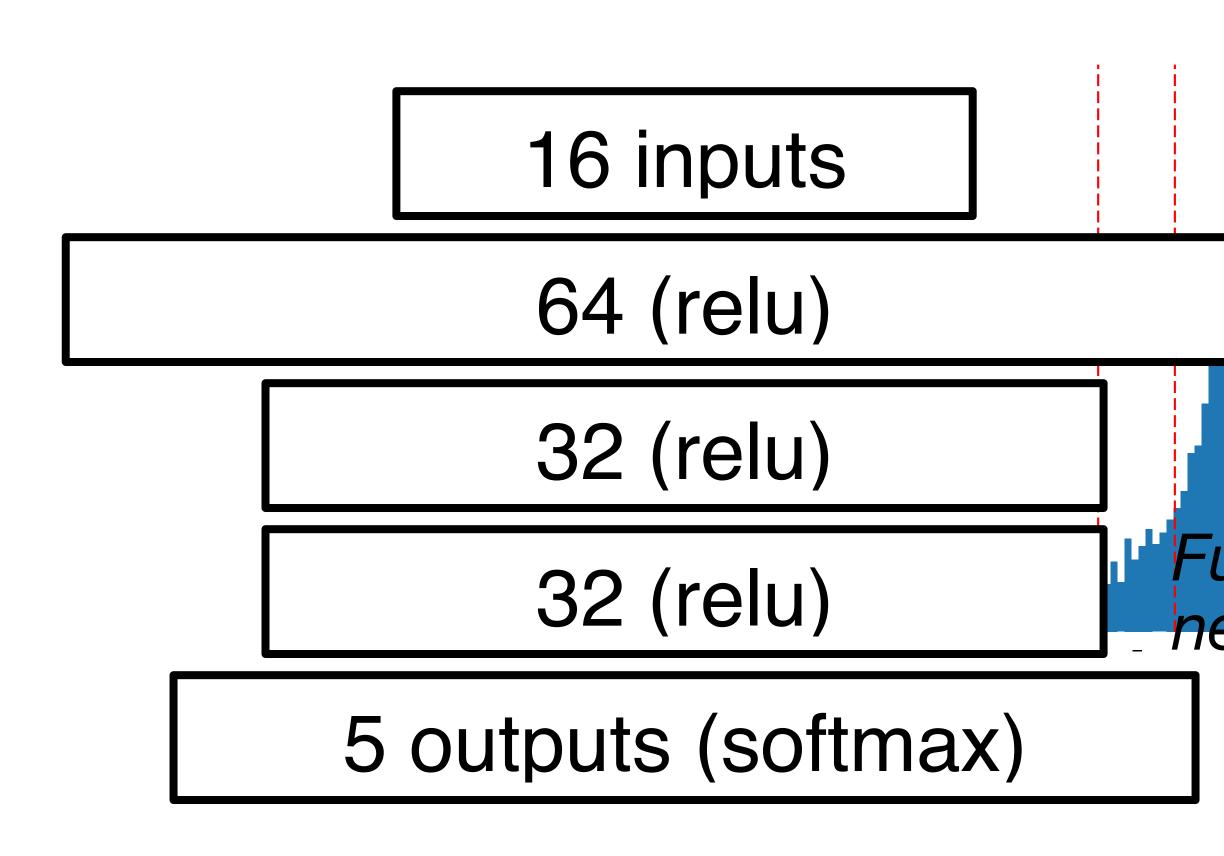
Keras/TF inputs

EXAMPLE: JET SUBSTRUCTURE

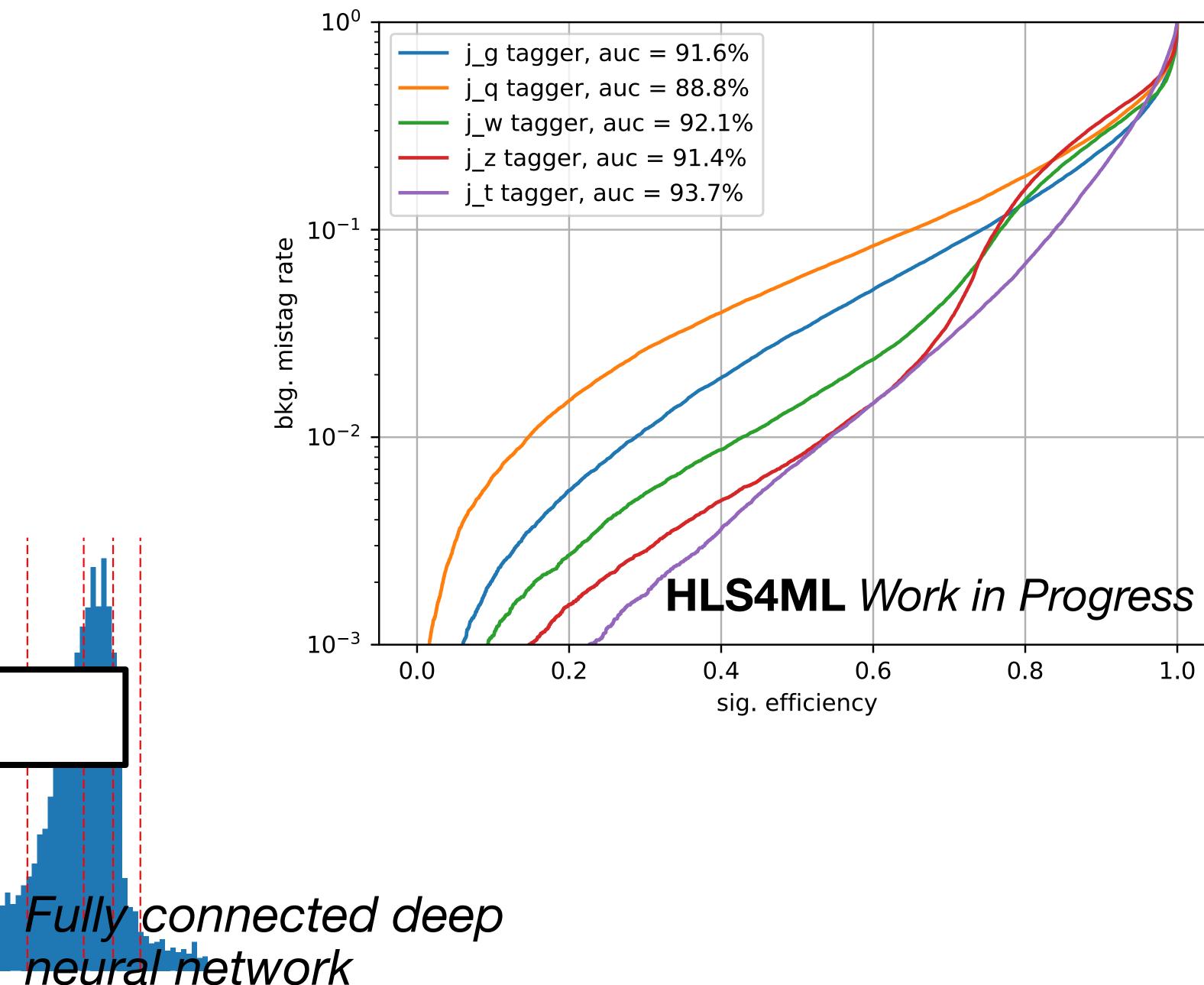
5 output multi-classifier:

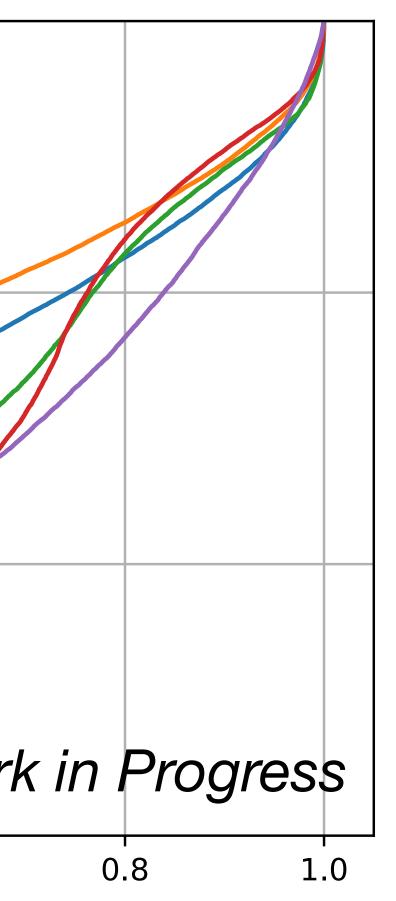
Network architecture

16 expert inputs jet masses, multiplicity ECFs ($\beta = 0, 1, 2$)



Does a jet originate from a quark, gluon, W/Z boson, top quark?

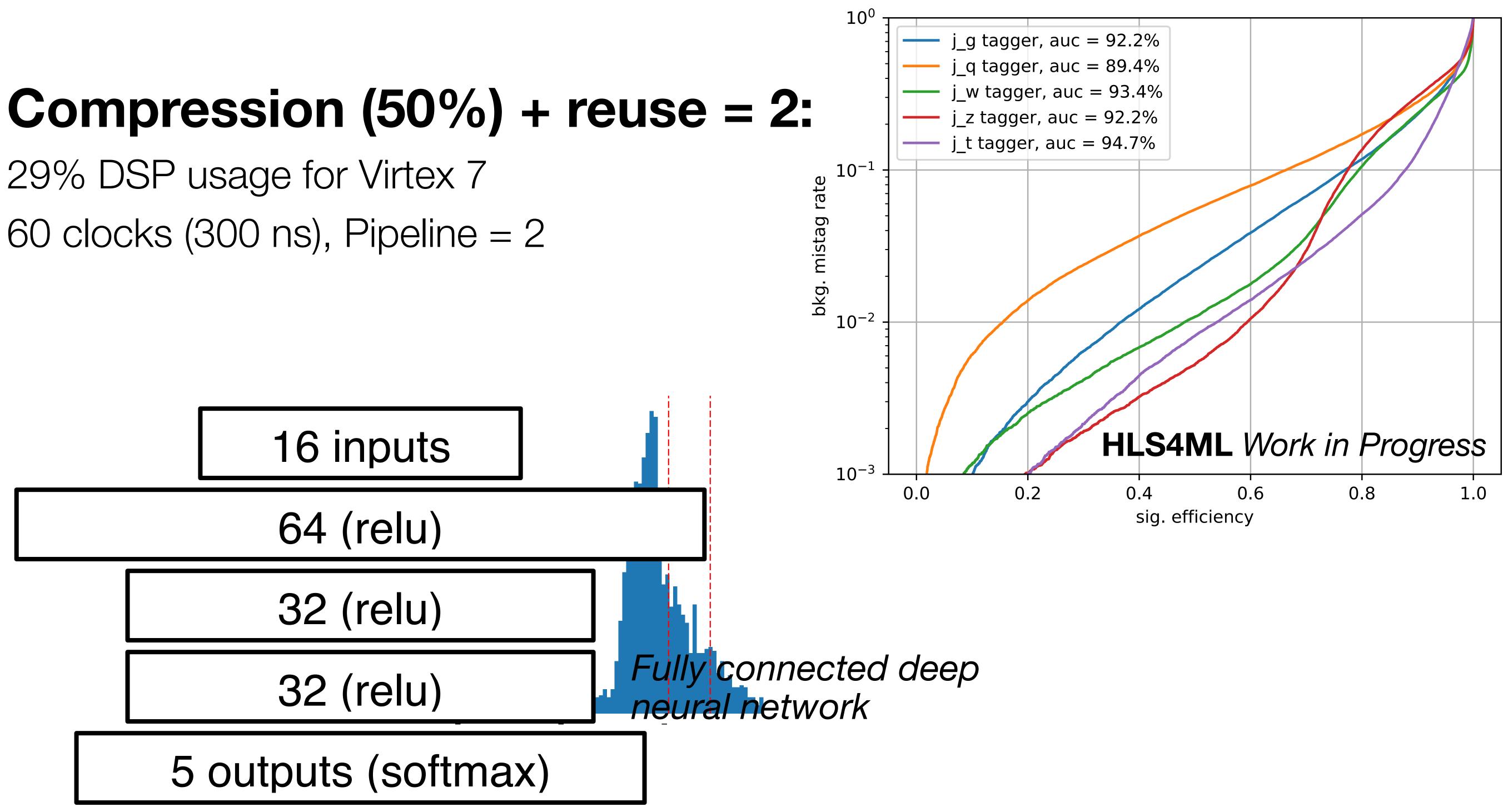




EXAMPLE: NETWORK (NOT JET) PRUNING

Resource usage: 92% DSP usage for Virtex 7 61 clocks (305 ns), Pipeline = 1

29% DSP usage for Virtex 7



MINI-SUMMARY

HLS4ML

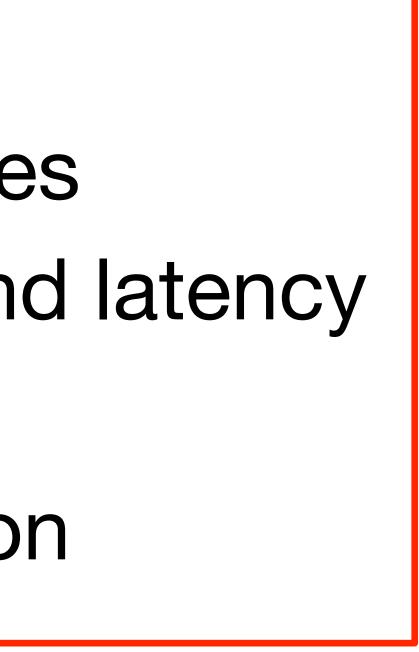
a tool to translate ML algorithms for FPGAs in minutes highly parallelizable with user controls for resource usage and latency tunable precision, resource reuse very efficient network design with model compression

Work in progress

Mapping out resource usage and latency as a function of neural network hyper parameters More network architectures: CNN (in progress), RNN/LSTM (tricky!), TMVA BDT (efficient?)

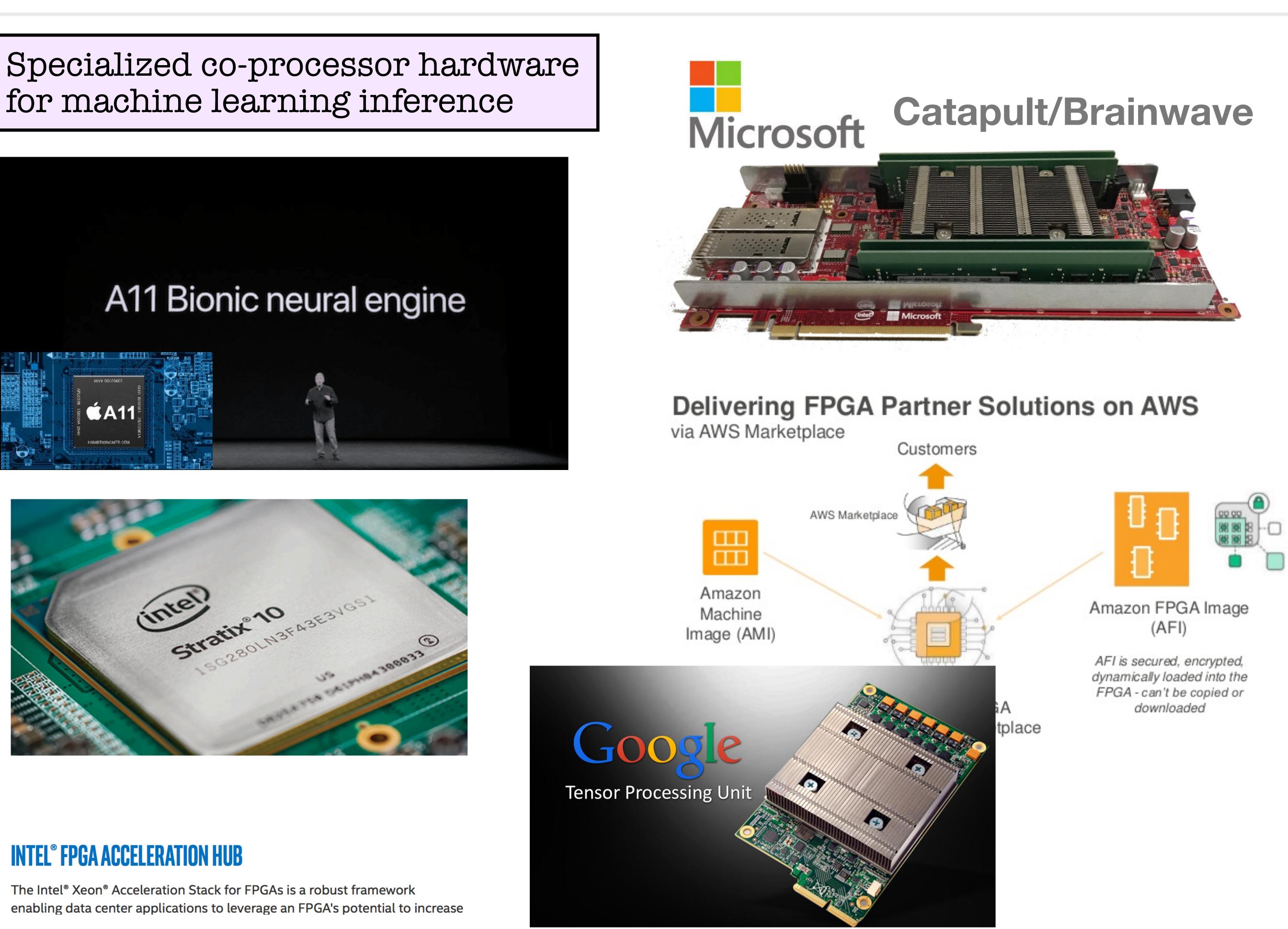
Status

Alpha version - few weeks; Targeting March-April release of Beta version Please contact us if you are interested! <u>hls4ml.help@gmail.com</u>



one more fun thing to think about for the high level trigger (and beyond?)

#TRENDING

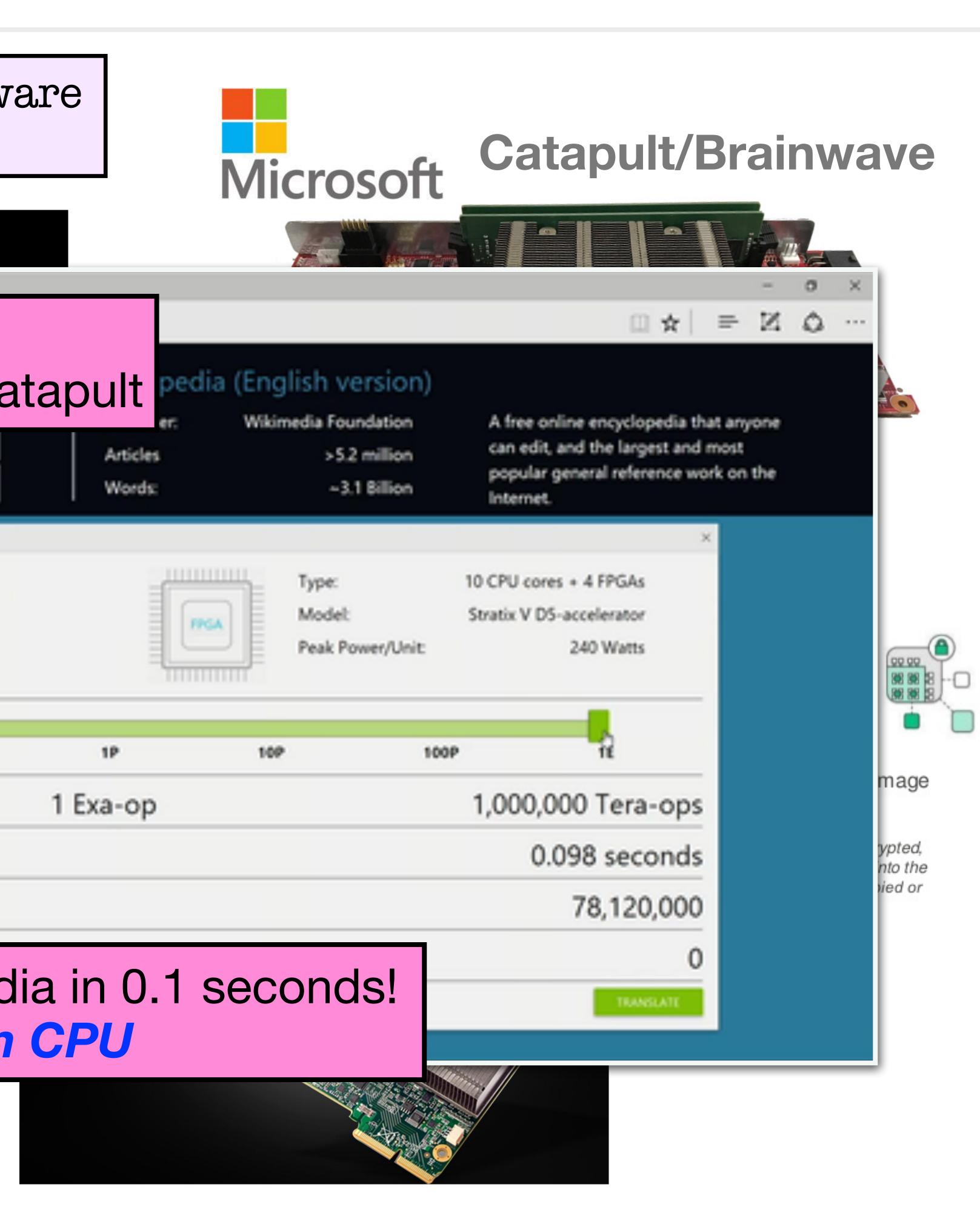


#TRENDING

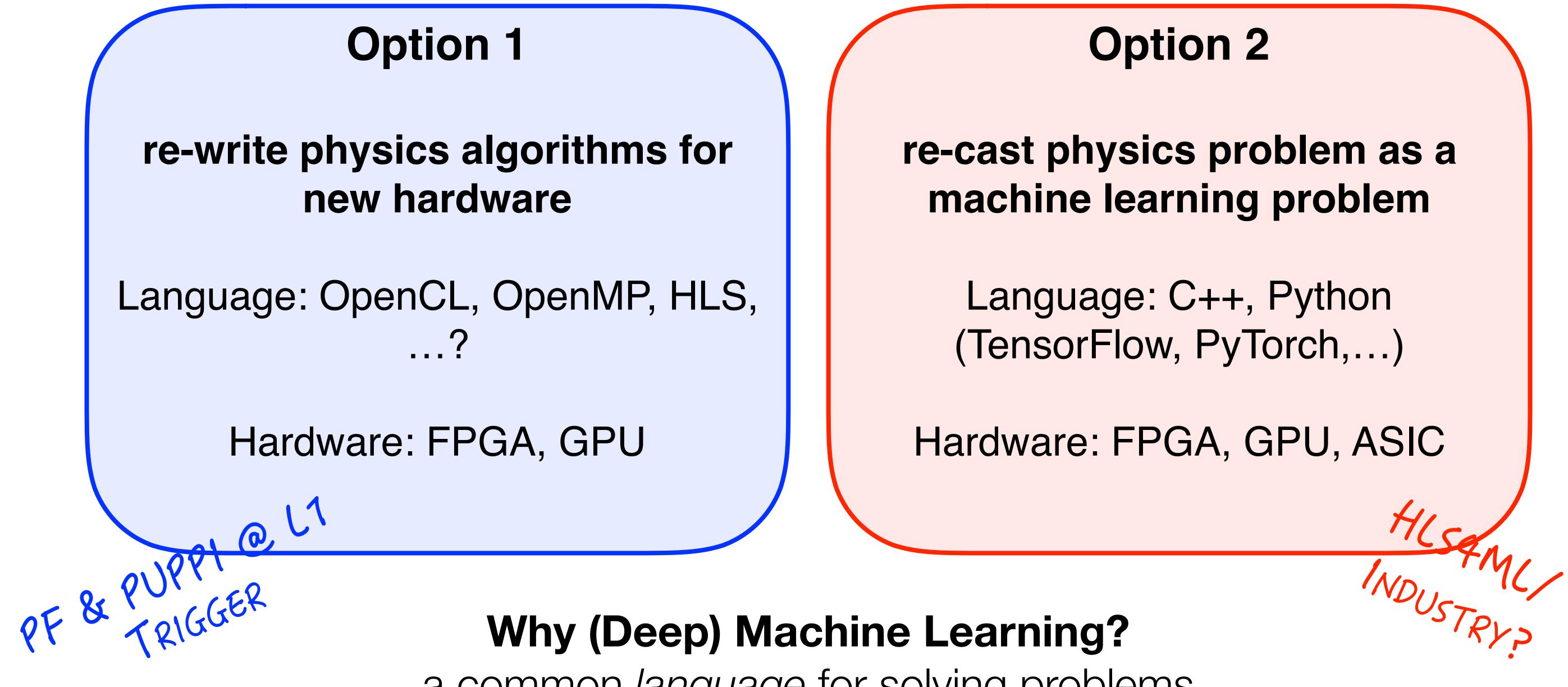
Specialized co-processor hardware for machine learning inference

			× +
		ady exister example:	ts! Microsoft ca
		Data Source:	Wikipedia •
		Translate to:	spanish •
		Processor Type Azure FPGA Server –	\$V4-D5-1U •
		Compute Capacity	10T 100T
		Compute Cap	acity:
CITE OF		Estimated Tin	ne:
		Pages Per Second:	
	Transl ~0(10	ation of a 0) times	all of wikiped faster than
INTE	L [®] FPGA ACCELER	ATION HUB	

The Intel® Xeon® Acceleration Stack for FPGAs is a robust framework enabling data center applications to leverage an FPGA's potential to increase



ML BABEL FISH



which can universally be expressed on

a common *language* for solving problems optimized computing hardware and follow industry trends

Large gains from hardware accelerating co-processors Industry trending towards specialized computing paradigms

SUMMARY AND OUTLOOK

Recent advances in hardware and compilation/synthesis allow for sophisticated techniques at low latency

> Big improvements in performance, preserve soft and hidden signatures

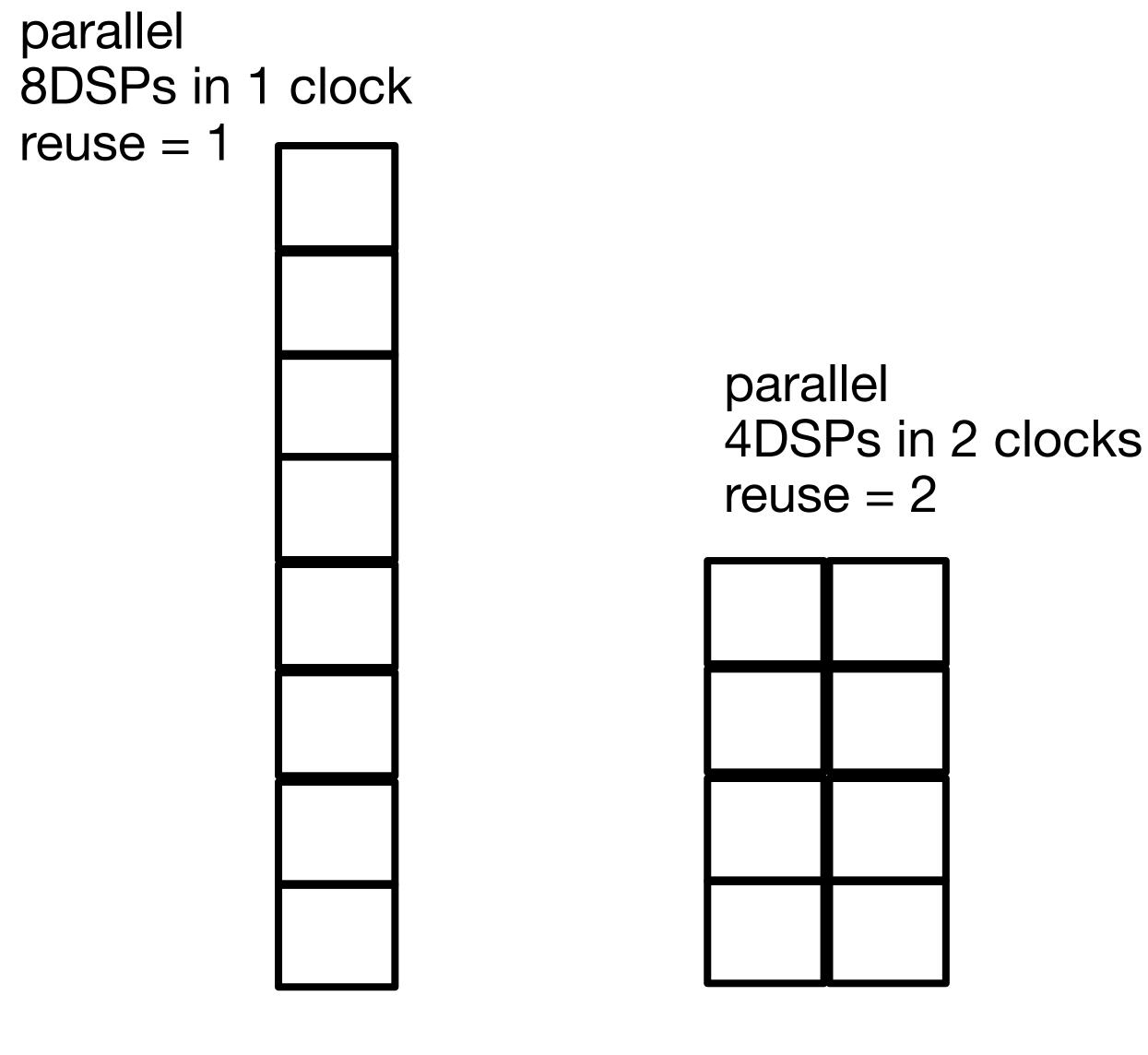
Proof-of-concept holistic pileup mitigation techniques such as PUPPI Efficient machine learning at Level-1 Trigger New paradigms for HLT and offline?

25

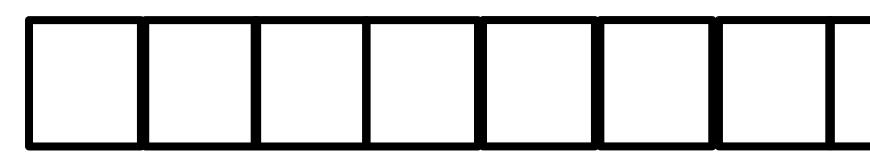
BONUS

ReuseFactor: how much to parallelize operations a hidden layer

of multiplications per clock (DSPs usage)



time

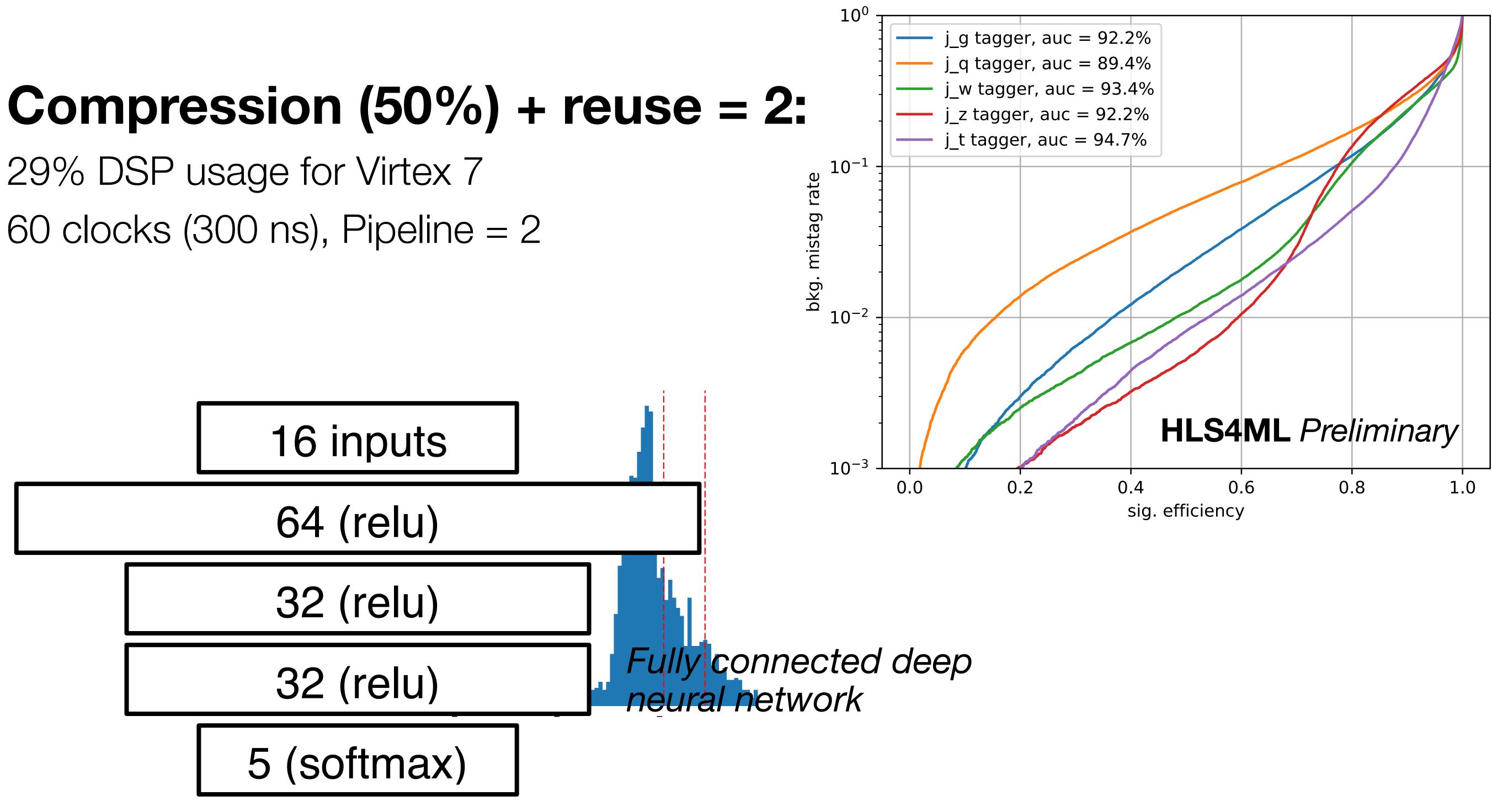


(decreasing throughput)

EXAMPLE: NETWORK (NOT JET) PRUNING

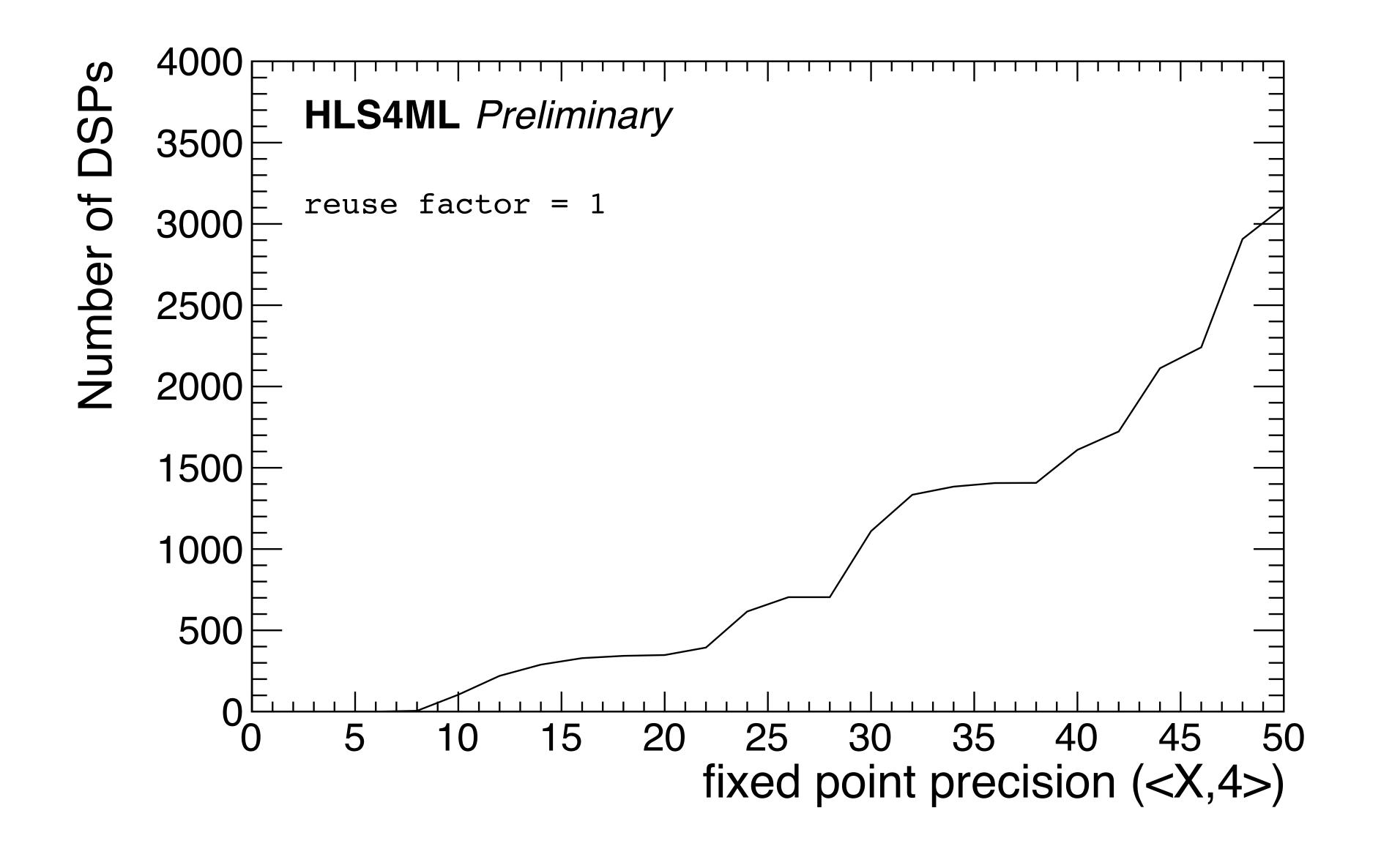
Resource usage: 92% DSP usage for Virtex 7 61 clocks (305 ns), Pipeline = 1

29% DSP usage for Virtex 7

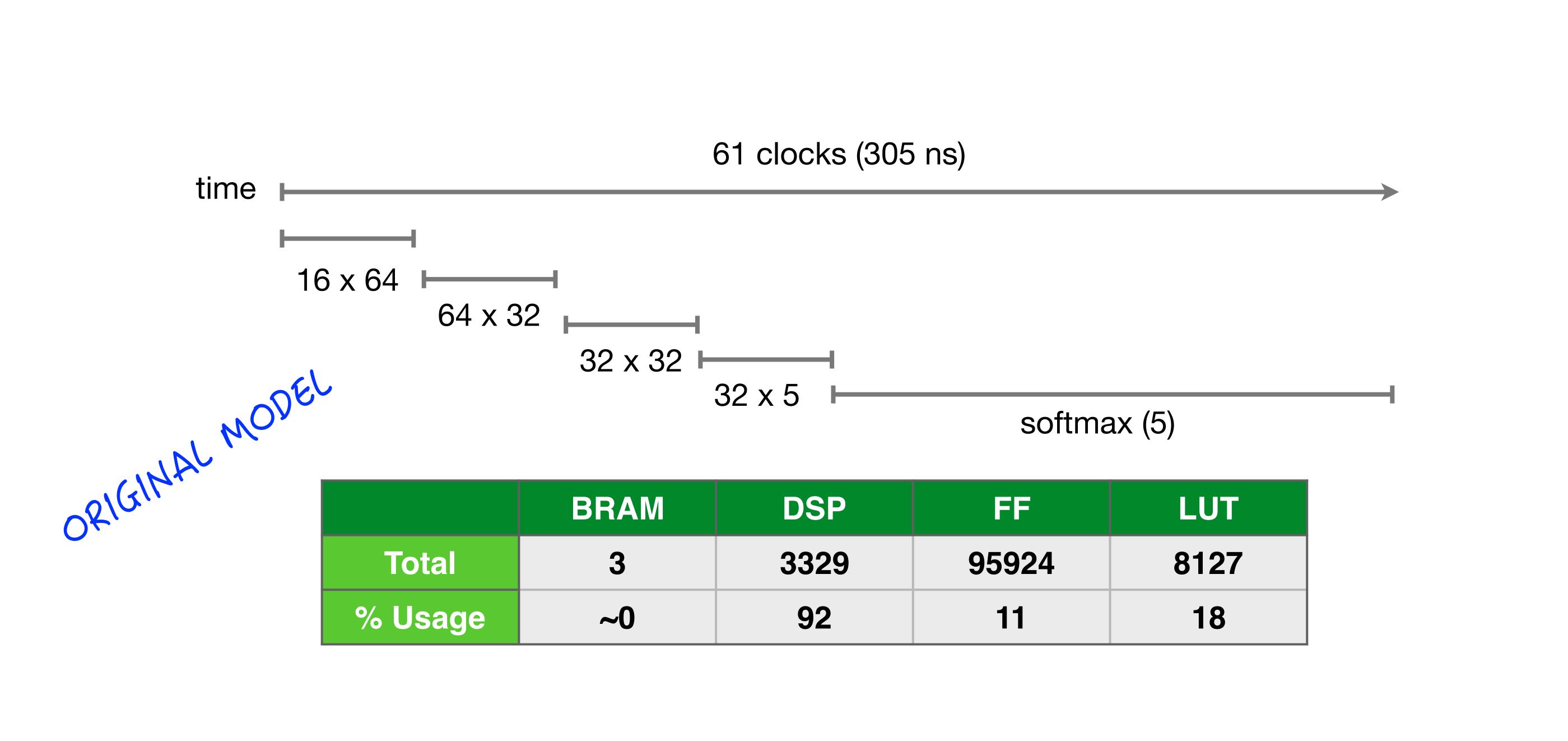


EXAMPLE: QUANTIZATION

Take a simple 1-layer network and scan in input/weight precision Reduced precision can greatly reduce resource usage e.g. factor of 4 reduction with 18 instead of 32 bits with minimal loss in performance

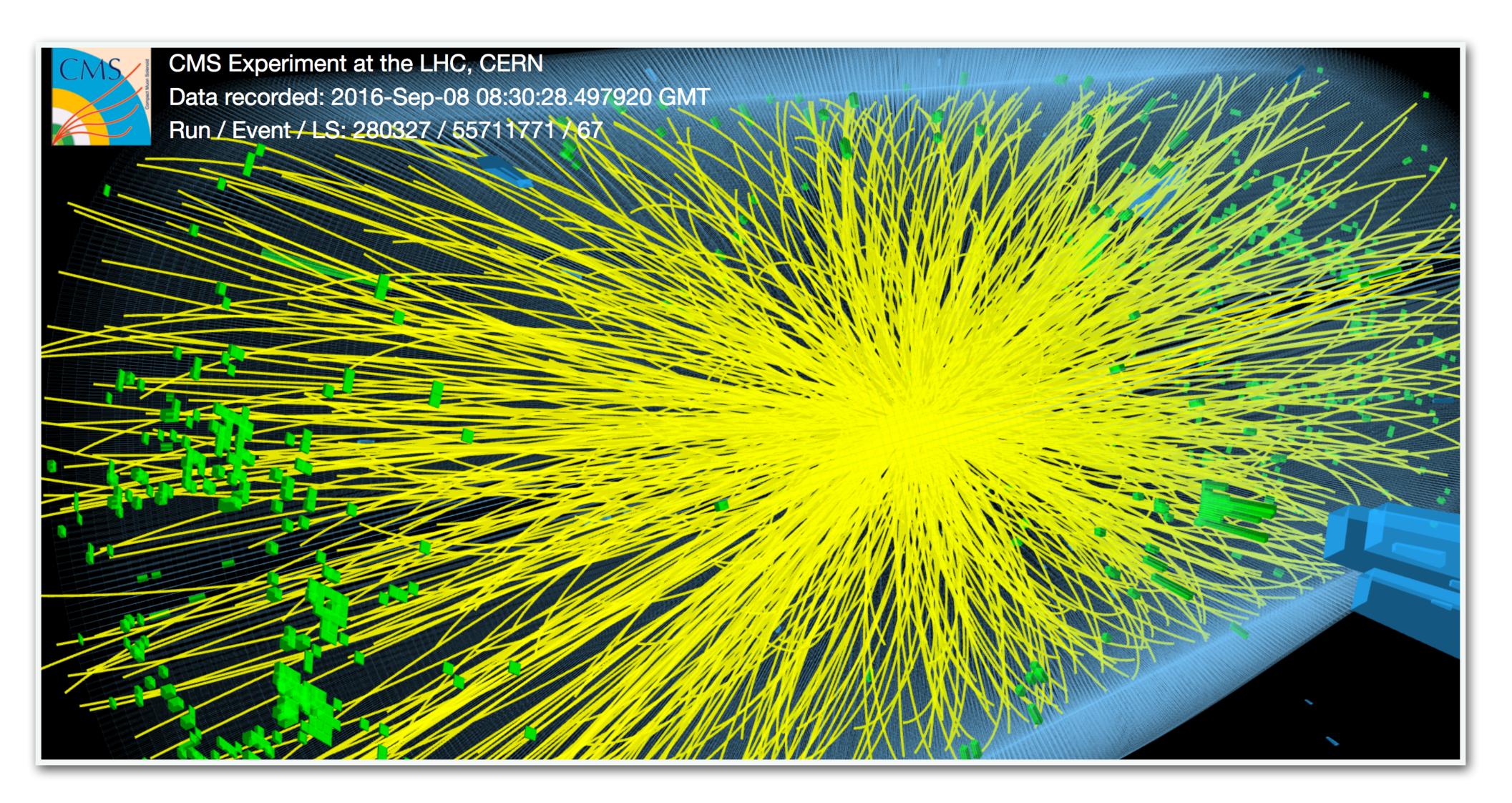


UNDER THE HOOD



DSP	FF	LUT
3329	95924	8127
92	11	18

THE COMPUTING CHALLENGE

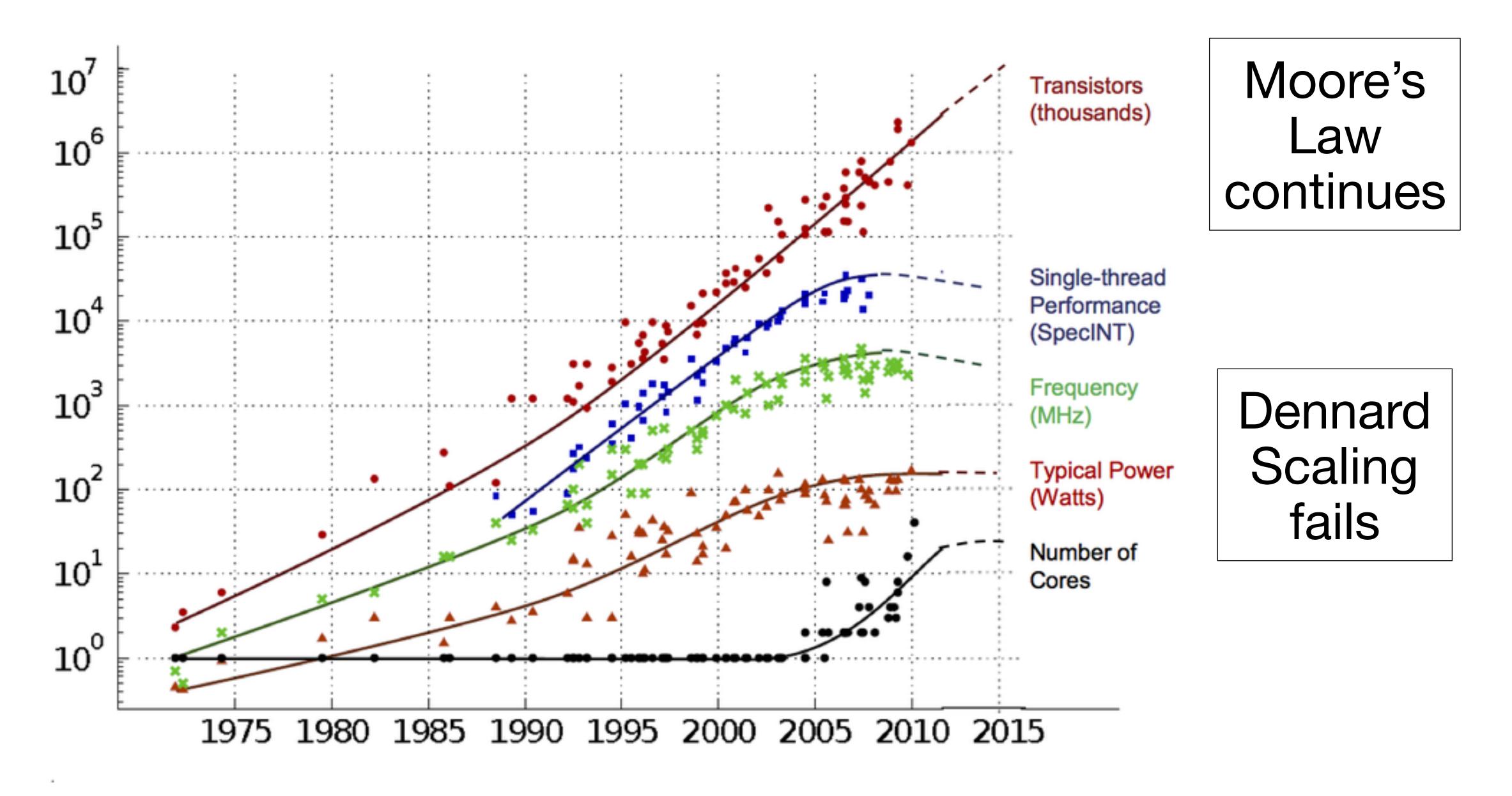


Major HLT and computing challenges going forward!

Current: ~5 minutes per **HL-LHC** event **100 times the** data...

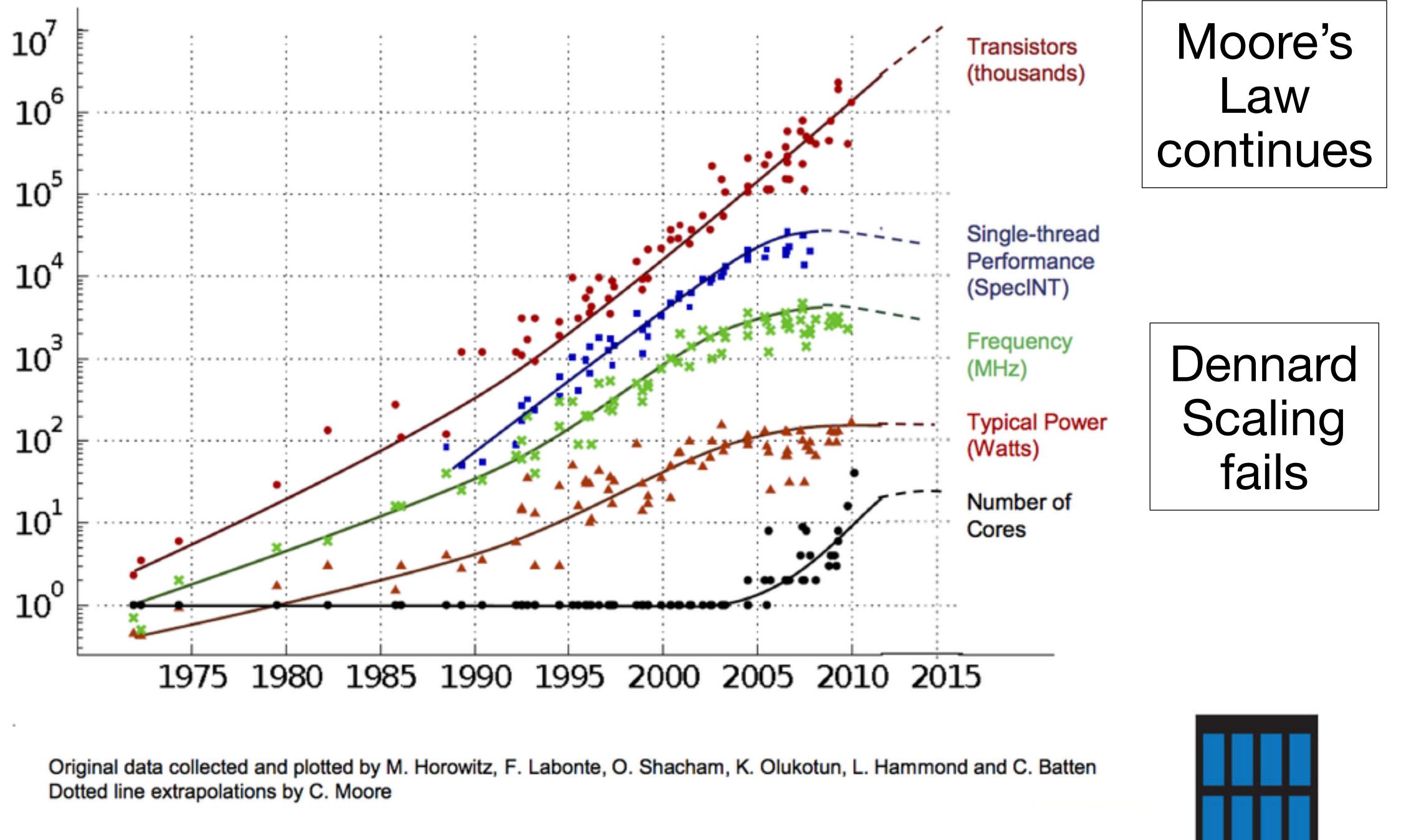
exabytes!

MOORE'S LAW AND DENNARD SCALING



Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

MOORE'S LAW AND DENNARD SCALING



Single threaded performance not improving Circa ~2005: "The Era of Multicore" → Today: Transition to the "Era of Specialization"? (c.f. Doug Burger)

CPU

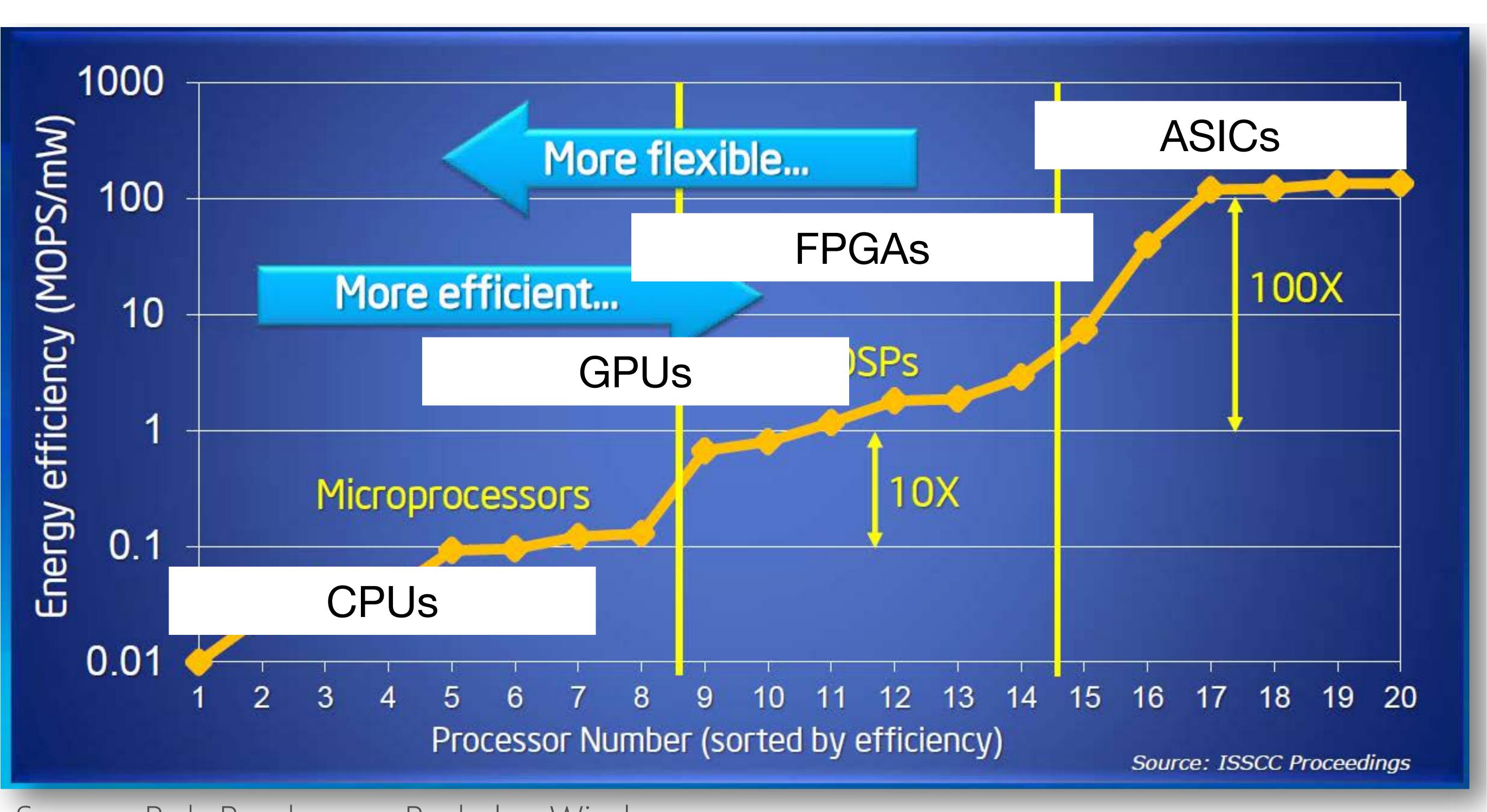
MULTIPLE CORES

GPU THOUSANDS OF CORES

																-												
																							Т					
																							Т					
										т													T					п
										Т													Т		Т			
										т													Т					
										т						-							т					
																							т					
												-				-							т					
		=														-							т				-	
										T							=						1			-		
									T														I					
I																					÷	11	T	T				
T		-	-							T			=			-				-			T					÷
1																					٠							
1																												
T										т									11				T	Т				
T						T				T													T	T				
Т						T				T													T					
I		=			-					Т				. =							-						-	
1	T	=														-	-							Т			-	
I		=	-		=									-		=	=										-	
1																							1					
l																	đ						T					1
T										Т						-							T					
I	Т												-			-	-						Т	т				
										t			i.		ü	i	_							Т				н.
									ł	Ŧ	F	i	i		-	i	_					-		ł	ł	_		ï
t				_						ŧ	ļ		_				_			H						_		=
İ								H					ī													_		=
İ				ł			E		ł				ī									1				_		=
							E						ī													_		=
							E																			_		
											ł																	

32

ARCHITECTURES



Source: Bob Broderson, Berkeley Wireless group

* GPUs still best option for training
* FPGAs generally much more power efficient

