

(GA+41) x2) x (72)

Overview of the High-Luminosity Upgrade for the CMS Level-1 Trigger

Cristina Botta, CERN

'Triggering on new Physics at HL-LHC'

Princeton Center for Theoretical Science. January 15th - 17th 2018.

Outline

- This workshop focus: discuss new physics signatures, trigger strategies and algorithms with phenomenologists to motivate future developments and implementations of the trigger system for the detectors of HL-LHC
- The Interim TDR for the Phase-2 Upgrade of the CMS Level-1 Trigger has been recently reviewed by the LHCC and published
 - it documents the current and planned research and development
 - baseline definition of trigger primitive objects, trigger algorithms and interchange requirements with subdetectors
 - Initial demonstration of key implementation technologies
 - a roadmap to the preparation of a future TDR

• In this talk: will briefly describe the general physics guidelines and will present an overview of the conceptual design that enter the ITDR

Physics guidelines

- New Physics at the weak-scale could be hiding in the difficult corners of the phase space, or in small deviations of the SM behaviours
 - direct searches more sensitive to hard to identify configuration
 - ex. exploit low momentum lepton signatures to search for Compressed Spectra or Displaced Dark Matter
 - indirect searches through small deviations of the SM properties
 - SM Higgs boson properties, ~1% on coupling to access 1TeV NP
- Require the high statistical power dataset of HL-LHC
- CMS will have to maintain the Phase-I overall physics of acceptance under the harsh pile-up environment:

 140(200) for L = 5(8)*10³⁴ cm⁻²s⁻¹
 - efficiently trigger on low/medium p_T physics objects: leptons, photons, (b-)jets, E_T^{miss}
 - maintain flexibility to anomalous signatures

CMS Phase 1 trigger

- Level 1 (L1): custom hardware processors that receive data from Calo and Muon systems, L1A signal within 3 µs, max rate 100 KHz. At each L1A, full detector is read out.
- High Level Trigger (HLT): implemented in software, reduces the rate to
 KHz
- With Phase-I algorithms 1500(4000) KHz of L1A rate for same Physics acceptance @140(200)PU: beyond technical feasibility.
- Important lessons from RunI and RunII:
 - Offline particle flow (PF) event reconstruction: brought significant resolution improvement
 - **High Level Trigger (HLT):** PF pushed into HLT, similar Offline vs HLT objects
 - Level 1 (L1): Final limitation: no tracking available, dissimilar HLT vs L1 objects

Major foreseen upgrades

- CMS is investing in providing more and better information for L1
 - Enable similar HLT vs L1 objects:
 better turn-on curves, lower rates for same thresholds

- Increased input data compared with Phase-1
 - Inclusion of Tracking information at L1 to be combined with Calo and Muon
 - Upgrades to the L1 Calorimeter and Muon trigger systems
 - full exploitation of the Track trigger requires good position and energy resolution
 - Barrel: replacement of electronic systems to reach ECAL crystal-level energies (25x increase over current input data) and full exploitation of spacial DT resolution
 - Endcap: 3D High Granularity calorimeter, new endcap muon chambers

Major foreseen upgrades

- Increased processing compared with Phase-1
 - Upgrade of the Global Trigger (GT) with intermediate Correlator Trigger (CT)
 - to fully exploit the increased information in the trigger objects
 - more precise position and momentum resolution, calorimeter shower shape, number of tracking and muon hits ...
 - match tracking info with fine grain calo info
 - fit muon and track data together
 - more sophisticated and effective topologically-based global trigger calculations
- Input data and algorithm processing driving design and HW choices
 - taking full advantage of Field Programmable Gate Array (FPGA) and optical link technologies as well as their maturation expected over the coming years

Major foreseen upgrades

- Detector readout and DAQ systems will allow 12.5 µs latency
 - Tracking information for the L1 trigger require increase in L1 latency
 - Input data received by CT: 5 µs (needed by L1 track trigger)
 - **Trigger objects received by GT: 7.5 µs** (tracks processed to find the PV, associated to PV, matched with Calo and Muon objects, used to compute isolation ...)
 - L1A received by TCDS: 8.5 μs (global sums, kinematic calculations, trigger decision logic...)
 - L1A received by front-ends: 9.5 μs (plus 30% of safety factor)
- Detector readout and DAQ systems will allow L1A rate of 750 KHz
 - adding L1 tracking information matched to improved L1 Calo and Muon trigger objects rate substantially reduced:
 - from L1 Menu studies 260(500) KHz @PU140(200) + 50% uncertainty

High Level view of the Phase-2 L1

Trigger Primitives overview

• Outer Tracker:

- readout at 40 MHz thanks to ability to perform p_T
 measurement with front-end electronics: p_T modules
 - rate reduced by a factor 10 with p_T>2 GeV selection
- trigger require full track reconstruction
 - @PU 200 15000 stubs sent to the Track Finder TPG which must reconstruct tracks within 5 μs
 - <200> tracks to be sent, 100 bits per track

Muon system:

- Barrel: DT TPG and RPC link board system replaced to exploit DT full spatial resolution, improve time resolution of RPC clusters from 25 to 1 ns
 - new DT stub identification algorithms and proposals for new DT, RPC words
- Endcap: coverage will be extended by the addition of iRPC and GEM which will all provide TPs to the L1 trigger

Trigger Primitives: Calorimeters

ECAL Barrel

- EB TPG (back-end electronics) will receive crystal data from the detector
- Studies of cluster primitive word generate by EB TPG are on-going

• HGCAL

- Each trigger layer provide "trigger cells" (sums over individual channels) with front-end electronic E_T threshold
- TPG: for each layer 2D clusters from trigger cells then combine the 2D clusters in depth to form 3D clusters
- Time-multiplexing to transfer all the 2D clusters into one FPGA for 3D mapping; preliminary firmware implementations indicate TPG within 5 μs

3D Cluster E_T>1 GeV

Trigger Primitive Summary

Table 2.1: Summary of the logical input data to the Phase-2 L1 trigger.

Detector	Object	N bits/object	N objects	N bits/BX	Required BW (Gb/s)
TRK	Track	100	400	40 000	1 600
EB	Crystal	16	61 200	979 200	39 168
HB	Tower	16	2 304	36864	1 475
HF	Tower	10	1 440	13 824	553
EC	Cluster	200	400	80 000	3 200
EC	Tower	16	2 400	38 400	1 536
MB DT	Stub	70	240	33 600	1 344
MB RPC	Cluster	15	3 200	48 000	1 902
ME CSC	Stub	32	1 080	34 560	1 382
ME RPC	Cluster	15	2304	34 560	1 382
ME iRPC	Cluster	41	288	11 808	472
ME GEM	Cluster	14	2 304	32 256	1 290
ME0 GEM	Stub	24	288	6912	276
Total	-	-	-	-	53 980

The L₁ Trigger receives > 50 Tb/s

Trigger Algorithms

- To maintain Phase-1 trigger thresholds it's crucial:
 - identify the PV to mitigate PU effects
 - match the performance of offline algo with extensive use of tracking information: well match algo provide sharpened turn-on of the efficiency, reducing rate, naming lower thresholds
- R&D strategy employed in the past two years:
 - stand-alone objects: robust triggers based on independent sub-det, reference to compare improvements
 - track-matched objects: tracking used to confirm standalone Muon and Calo objects, significant improvement with simple design
 - particle-flow (PF) objects: ultimate performance improvement, combine all information and match offline algo, require most processing time and resources for calculation
- Complete suite of Phase-2 triggers is expected to be rich

Vertex reconstruction

- Several algorithms have been tested
 - Simple: Histogramming method
 - z_0 histogram of all the L1 tracks weighted with p_T , PV obtained maximising the total scalar p_T in 3 consecutive z bins.
 - Best performing: density based spatial clustering of application with noise (BDSCAN)
 - good vertex reconstruction efficiency, excellent tolerance for fake tracks, already implemented in FPGA
- 86% reconstruction efficiency (within 1.5 mm from true vertex) in ttbar events for 200 PU
 - much less in signal processes with less high-pT tracks: but lepton/photon triggers can do

Muons (tracked-matched)

- L1 Muon trigger always provided candidates (p_T~20GeV) with high purity,
 but too high rate due to the poor p_T accuracy
 - Core momentum resolution require L1 thresholds lower than offline, bad turn-on
 - Non-negligible tails of momentum resolution, flattening of the rate for $p_T > 20$
- Matching with L1 Tracks provides a major improvement
 - Inside-out and outside-in matching algo (same performance)
 - Efficiency > 95%, online-offline offset negligible, factor 6 to 10 of rate reduction for SingleMu p_T > 20 GeV
 - Rate reduction in DoubleMu trigger thanks to dz₀ < 1cm

still valid also at PU 200

Muons (stand-alone)

- Improvements in barrel stand-alone momentum resolution (Phase-2 vs -1)
 - Exploitation of DT full spacial resolution thanks to electronic upgrade
 - Use of advanced FPGAs with large number of DSP cores, large numbers of LUTs, and can operate at high clock frequency, is essential to develop new algorithms
 - Development of Kalman filter approach in trigger hardware, ⁹/₂ 0.35 muon ρτ = 100 GeV
 to take into account the energy loss and multiple scattering
 - First implementation in Vivado HLS looks promising

 Improvements in Muon Endcap trigger efficiency and rate reduction thanks to new chambers

Electrons and Photons

- Stand-alone: must provide high efficiency especially for high-p_T objects
 - the digitised response of every crystal of the ECAL barrel will provide crystal-level energy measurements
 - improved position resolution of the EM clustering algorithms (similar to offline)
 - New trigger design improve rates, efficiency for EGM clusters is kept up to ~99% at plateau
- Track matching: rate reduction
 - L1 Tracks are extrapolated to the ECAL surface and matched to EM clusters.
 - To maximise electron reconstruction efficiency:
 - looser matching windows in tracking algo and track $p_{\text{\scriptsize T}}$ determination only with innermost hits
 - track selection and matching criteria different for low vs high momentum electrons
 - Track-matched electron object ~90% efficiency in central barrel, trigger rate reduction by a factor 5

Tracker Isolation

- Isolation requirement: efficient handle to increase the purity of the lepton/photon sample
 - track isolation more robust to PU wrt calorimeter-based isolation

Muons and Electrons

- scalar sum of the L1 Tracks p_T in ΔR (0.2-0.3) around the lepton track (footprint removal for electrons) divided by lepton p_T
- tracks must pass quality requirements and have z_0 consistent with the lepton: $|z_0 z_{lepton}| < \Delta z_{max}$

Photons

- all tracks in $\Delta R_{min} < \Delta R < \Delta R_{max}$ irrespective of z_0
- ΔR computed with η , φ of the L1 EM cluster

Factor 2 in bkg reduction for 95% signal efficiency

Taus

- Identification of τ_h : challenging, usage of tracking becomes critical
 - Phase-1 algorithms to select τ_h candidates from isolated Calo Clusters (Phase-1 L1 Taus from Phase-2 TPs)
 - High p_T L1 tracks matched to Phase-1 L1 Taus (Phase-2 L1 TauTk)
 - L1 track-based isolation requirement is applied (Phase-2 L1 TauTkIso)

Single Tau trigger

 50 kHz at PU200(140) with thresholds: 90(78),90(78), 52(46) GeV

Double Tau trigger

- τ_h are required to come from the same vertex (Δz<1 cm)
- 50 kHz at PU200(140) with thresholds: 46(42),40(36), 25(22) GeV

Jets, H_T, MH_T, E_T^{miss}

- Multi-object triggers very sensitive to PU
 - H_T, MH_T, multi-jets: reduce the PU dependency requiring jets from same vertex
 - L1 calorimeter jets are matched to L1 tracks in a η-φ cone around the jet
 - zo position of jet vertex determined with p_T weighted average of the tracks zo
 - 1 mm resolution, 95% efficiency to reconstruct the vertex within 1cm from the true vertex in ttbar events (jet p_T> 70 GeV)
 - The leading jet used to set the z-vertex reference
 - Tracking based E_T^{miss}: vectorial sum of all the tracks p_T that come from the PV (zo consistent with PV within ~1 cm)
 - track quality cuts to reduce mismeasurements

Trigger Menu

- Simplified menu similar to the one developed for Phase-I TDR:
 - it includes 20 major trigger paths that capture key physics signals
 - it covers ~70% of the total L1 rate that would be needed for a full menu
 - remaining ~30% for specific physics targets, high $|\eta|$, diagnostic and prescaled triggers, etc...
 - it provides an estimate of the individual trigger rates and the total L1 bandwidth required to maintain the physics acceptance as indicated in the Phase-1 TDR (threshold O(20-50) GeV)
 - It shows the power of the L1 tracking when made in conjunction with an upgrade to the total L1 bandwidth: it is not an optimised L1 menu
- Trigger primitives are not all up to date!
 - phase-2 outer tracker, phase-1 pixel, phase-0 (i.e. post LS1) calorimeters (ECAL barrel rechits are used to apply 'phase-2' clustering) post LS1 CSC upgrades muons.

Trigger Menu

- Thresholds scaled from online to offline values
 - scaling chosen such that the trigger object is 95% (85% for taus) of the plateau efficiency for an offline cut at the threshold
- Single lepton triggers include tracking requirements
- γ/e have to be kept separate: inclusion of single and double γ paths
- Isolated e/γ use tracking isolation
- Dilepton triggers make use of tracking info on first leg, and sometimes also on second leg
 - if both legs have a L1-Track 'same-vertex' requirement (Δz ≤ 1 cm)
- Multijets, H_T and H_T^{miss} triggers use collections of jets that are consistent with coming from the event-vertex, $|z-z_{PV}| < 1$ cm

	14 to - los (aT - 0.0-)		Offline
Trigger	L1 tracks (pT > 2 GeV) correlated with object	Rate	threshold(s)
algorithm	correlated with object	kHz]	[GeV]
$\langle PU \rangle$	200		
Single Mu (tk)	27	18	
Double Mu (tk)			14 10
Ele* (iso tk) + 1	0.2	19 10.5	
Single Ele* (tk)	38	31	
Single iso Ele*	27	27	
Single γ^* (tk-is	19	31	
Ele* (iso tk) + e/γ *			22 16
Double γ^* (tk-	5	22 16	
Single Tau (tk)			88
Tau (tk) + Tau			56 56
Ele* (iso tk) +	23	19 50	
Tau (tk) + Mu (tk)			45 14
Single Jet			173
Double Jet (tk)			2@136
Quad Jet (tk)			4@72
Single ele* (tk) + Jet			23 66
Single Mu (tk) + Jet			16 66
Single ele* (tk) + $H_{\rm T}^{\rm miss}$ (tk)			23 95
Single Mu (tk) + H_T^{miss} (tk)			16 95
H_{T} (tk)			350
Rate for above triggers*			
Est. rate (full E	390		
Est. total L1 menu rate (× 1.3)			

- HL-LHC 200 pile-up events per beam crossing
 - No tracking at L1: rate ~ 4 000 kHz
 - Tracking at L1: rate ~ 500 kHz
- No uncertainties on actual detector performance, and detector readout electronics
 - allow 50% margin
 - max design rate 750 kHz
- Light lepton, Photon HL-LHC thresholds are comparable with Runl, Phase-1
- Hadronic algos need more work to be comparable with Runl, Phase-1
 - how to improve further?

(*) paths where electron and photons are restricted to the barrel

New algorithms: PF@L1

 From combining the complete detector information using the Particle-Flow algorithm closely matching offline and HLT:

EM Clusters (from ECAL and HGCAL EM Clusters TPs),

Calo Clusters (from EM Clusters + HCAL Towers + HGCAL Hadronic trigger cells),

Tracks (from L1TF),

Stand Alone Muons TPs

L1 PF Candidates: Charged and neutral hadrons, photons, muons, electrons

- Pile-Up-Per-Particle-Identification (PUPPI) on PF candidates greatly mitigate PU effects
 - uses vertexing info from tracks and QCQ-based ansatz function to define a particle weight
 - vertexing done in parallel w/PF and PU estimate
 - L1 PUPPI runs on global list of candidates from PF step and select prompt physics objects

 E_{T}^{miss} , H_{T} , jets, prompt μ , electrons, τ_{h} , photons

PF+PUPPI algo & Firmware

Dedicated talk by Giovanni P. to discover all the details

- Algorithms with highest complexity: started to develop PF and PUPPI in firmware to optimise their total resources usage, within latency allocated for CT
 - First early test using Vivado HLS demonstrates feasibility: High-particle-density (25 tracks and 20 clusters) detector region
 - PF candidates generated in 4 regions with 0.5 µs latency, 40%
 resources of a Xilinx Ultrascale+ VU9P FPGA
 - PUPPI run with **0.1 µs latency**, **3% of same resources**

H_T trigger performance and more

- Comparing H_T trigger performance from PF-jets and Track-based jets
 - Different quality cuts applied on L1 tracks (looser for PF), jets $p_T > 30$ GeV
 - PUPPI performance depend on PV to be properly reconstructed: easy in events with large high p_T tracks multiplicity (ttbar)
 - PF+PUPPI more robust against fakes than track-only observables
 - higher signal efficiency, lower rates, lower thresholds
- H_T as early proxy for showing potential gain, much more to be developed:
 - jet substructure for heavy-particle tagging, lepton isolation, τh reconstruction

Other possible developments

- The use of advanced FPGAs with ever greater processing resources will allow a range of global algorithms, which will be extremely powerful thanks to the improved object position resolution of Phase-2 TPs
 - Inter-object correlation (Run 1 L1 trigger for soft muon b-tagging of jets)
 - Invariant mass calculation (introduced in Phase-1 GT, used for VBF jet pairs)
 - event-level discrimination variables based on full event reconstruction (MT2...)
- Machine learning techniques in the correlator for advanced object identification algorithms
 - increased bandwidth may allow the object ID variables sent to the CT/GT to be greatly extended
- Design of triggers for specific signal configurations: ex. displaced muon trigger
 - track from the track triggers cannot be reconstructed for muons with |dxy| > 1 cm and beam-spot constraint in the stand-alone muon p_T assignment
 - prototype algo drops the beam-spot constraint, requires precision measurements of the muon direction in at least two stations, applies a veto of the tracks from the track trigger extrapolated to the second muon stations

Conclusions

- CMS is designing a L1 Trigger for HL-LHC that will enable unprecedented exploration of the weak-scale physics frontier
- Moreover the trigger is being designed trying to guarantee enough flexibility for the implementation of algorithms dedicated to new signal topologies
- Good moment to discuss with phenomenologists: the current algorithm and hardware R&D phase will have to **converge to baseline definitions during the next two years**, given the TDR is expected by the end of 2019.